GRUAN, ICM-15, Berne, CH, 11 March 2024

Tracking biases and inhomogeneities in GNSS PW time series

Olivier BOCK, IPGP-IGN, France

With contributions from:

N. K. Nguyen (IPGP-CNES), E. Lebarbier (U. Paris Nanterre), P. Bosser (ENSTA-B) P. Rebischung (IPGP-IGN), C. Mears (RSS, USA), M. Sommer (DWD, Germany)

Objectives

- Better understand and reduce
 - GNSS PW biases and inhomogeneities
- Produce long-term, high-quality GNSS PW data with:
 - small or known biases
 - high spatial and temporal homogeneity
 - realistic uncertainties
- Monitor:
 - climate variability and trends
- Calibrate/validate PW from
 - reanalyses, climate models
 - satellites, and other observations
- Goal:
 - absolute accuracy: 0.5 kg m⁻² (or 3%)
 - trends: 0.1 kg m⁻² (or 0.6%) per decade

<u>Note</u>: 1 mm PW = 1 kg m⁻² TCWV or IWV

ERA5 & GNSS, TCWV anomaly, 2023

Error sources in GNSS PW estimation

<u>Note</u>: numbers from COST GNSS4SWEC final report (Chap. 5) ³

Impact of data processing scheme on PW

IGS repro1 vs. CODE "repro2"

	IGS repro1	CODE REPRO2015
Software	GIPSY OASIS II	Bernese GNSS software v5.3
Strategy	PPP solution	Double-difference solution of a global network
Orbits, clocks, ERPs	IGS repro1 (1995.0–2008.0) + IGS final (2008.0–2011.0)	CODE repro2 (1994.0–2015.0) + CODE final (2015.0–2019.0)
Reference frame	IGS05	IGb08
Antenna calibration	igs05.atx	igs08_1852.atx until 28 January 2017, igs14.atx from 29 January 2017
Window length	24 h	72 h
Elevation cutoff angle	(7°)	3°
Observations	GPS	GPS (1994.0–2002.0), GPS+GLONASS (2002.0–2019.0)
Observation sampling	5 min	3 min
Observation weighting	uniform	$\sigma^2 = 36 \times 10^{-6}/\cos^2(Z)$ where Z = zenith angle
Tropospheric model	ZHD and ZWD a priori: ZHD = 1.013 \times 2.27 \times exp(-0.116*ht), ZWD = 0.1 m. GMF mapping functions (hydrostatic and wet). Random Walk model for ZWD and gradient parameters with constraints: 3 mm h ^{-1/2} (ZWD) and 0.3 mm h ^{-1/2} (gradients). ZWD and gradient sampling: 5 min	ZHD and ZWD a priori: 6-hourly ECMWF analysis (provided by TUV). VMF1 mapping functions (hydrostatic and wet). Piece-wise linear model for ZWD with constraints: 5 m absolute and 5 m relative. Sampling : 2 h (ZWD), 24 h (gradients).
Tropo files	ZTD and gradient estimates provided in SINEX files (0000, 0005, 2345 UTC)	ZTD and gradient estimates provided in SINEX files (resampled to 01, 03, 23 UTC)
Coordinate estimates	Estimated once per 24 h	Estimated once per 24 h
Ambiguity resolution	Float	Fixed

92 stations (1995..2010), daily data

Nguyen et al., Atmosphere, 2021

Impact of equipment changes on PW

=> Eq. changes impact, differently, the two GNSS solutions

Impact of cutoff and APCV model on PW

Segmentation (change-point detection)

GNSSseg R package (Quarello, 2022)

<u>Model</u>:

- change in mean at unknown times
- periodic bias
- noise with monthly varyring variance

Method:

- Penalized Maximum Likelihood
 - 4 criteria implemented
- Relative segmentation method
 - GNSS reanalysis daily IWV diff.

<u>Results:</u>

- One of the best methods tested on a simulated benchmark dataset (Van Malderen et al., 2020)
- Applied to several GNSS reprocessed data sets.

Nguyen, N.K., PhD thesis 2023; Nguyen et al., Int. J Climatol, 2024.

<u>Attribution method</u>, for each break-point:

- associate main (G, E) & nearby (G', E') => 6 series of differences
- do statistical test for change in mean in each of the 6 series
- attribute (predict) origin of jump in each of the 4 base series (G, E, G', E'), method is based on a machine learning algorithm
 - current algorithm was trained on 494 triplets (main-break-nearby)

Jump = -1.03, t = -20.67, SD = 0.51, AR: 0.45, n1 = 624, n2 = 441

Jump = -0.01, t = -0.67, SD = 0.14, AR: 0.31, n1 = 624, n2 = 441

jump = -0.12, t = -2.43, SD = 0.43, AR : 0.84, MA: -0.58, n1 = 904, n2 = 804

Jump = -0.08, t = -1.71, SD = 0.45, AR: 0.48, n1 = 624, n2 = 441

Temporal homogeneity of various GNSS datasets

Segmentation/validation/attribution results

- Quarello, 2020: IGS repro1, 120 sta/16 yrs => 1.5 bk/sta/10yrs (32% validated wrt GNSS metadata)
 - Quarello, 2022: semi-automatic validation based on 3 penalty criteria + metadata => 1.0 bk/sta/10yrs (59% validated)
- Nguyen, 2021: CODE repro2, 81 sta/25 yrs => 1.7 bk/sta/10yrs (36% validated wrt GNSS metadata)
 - Nguyen, 2024: automatic attribution of 114 bk in 49 main with 704 nearby from NGL => 62% due to G and 19% to E
- Work in progress: NGL repro3, 6048 sta/29 yrs => 1.7 bk/sta/10yrs (GNSS metadata lacking)
 - 10% stations have homogeneous series (no bk detected)
 - Attribution algorithm is currently trained with 44,474 triplets (632 main & 3960 nearby) => R package in prep.

Absolute accuracy of GNSS PW

GNSS compared to other techniques

DEMEVAP campaign, Obs. Haute Provence, Sept-Oct. 2011

Lindenberg, 2015 GRUAN RS92-GDP.2

10

GNSS dry? GNSS wet?

Bock et al., AMT, 2013: DEMEVAP campaign

Spatial homogeneity vs. station-specific biases

GNSS vs. GNSS intercomparison

• Case study: 15 GPS stations in Guadeloupe, 2020

Spatial homogeneity vs. station-specific biases

GNSS vs. satellite MWR intercomparison

• Case study: 15 GPS stations in Guadeloupe, 2020

Bock et al., AMT, 2022: a new vertical correction method for the inter-comparison of IWV data

Estimation of GNSS PW uncertainty

- Is GNSS ZTD formal error estimate valuable?
 - Can help detect instrumental issues
 - Median value ~2 mm (0.3 kg m⁻²) seems too small
- Three-way error analysis (Guadeloupe)
 - u_GNSS = 1.06 kg m⁻²
 - u_MWR = 0.67 kg m⁻² (AMSR2)
 - u_ERA5 = 1.82 kg m⁻²
 - => Suggests to rescale GNSS formal error by x 3
- Realistic uncertainty is important for slope and offset regression (also for trend estimation)

Summary and discussion

GNSS PW errors (random & systematic)

- are site/station-specific
 - instrumentation, environment/multipath, geographic/climatic region
- depend on processing settings and models
 - mapping functions, antenna PCV, cutoff angle, weighting function...
- change with time (cause inhomogeneities)

Pathways, tools, methods to mitigate errors:

- optimize site/station-specific processing settings and models
 - tune CO, WF, MF, APCV
 - minimize biases, inhomogeneities, and random errors wrt reference measurements (e.g. GDP)
- detect and correct remaining inhomogeneities with post-processing methods
 - segmentation tool to characterize (in-)homogeneity of time series
 - attribution tool + jump correction => provide homogenous time series
- assess site/station-specific biases
 - exploit measurement redundancy (multiple GNSS, RS, MWR) with improved vertical correction method
 - repeat at global scale (GRUAN & IGS networks) => assess statistical significance
- global GNSS technique (dry) bias?
 - bias in APCV models? mapping functions? (both are cutoff-dependent)
 - refractivity coefficients (k_i) may have extra bias of 0.2 0.4 kg m⁻² (*Healy*, JGR, 2011, issue for GNSS-RO)
 - use revised coefficients (see *Bock et al.*, ESSD, 2021, adapted from *Rueger*, 2004); push for new k_i measurements?
- collaborative effort
 - GRUAN GNSS-TT in liaison with IAG/ICCC WGs and larger GCOS community