WMO radiosonde intercomparison campaign UAII2022

UAII2022

Ruud Dirksen GRUAN Lead Centre, DWD

GRUAN Implementation and Coordination Meeting (ICM-14) Saint Denis, La Reunion 28 Nov 2 Dec 2022

10

Deutscher Wetterdienst Wetter und Klima aus einer Hand

- > 1951 & 1956 Payerne
- 1984 Bracknell
- ➤ 1985 Wallops
- 1989 Dzhambul
- 1993 Tsukuba
- > 1995-1997 Moscow & Wallops
- 2001 Alcantara
- 2005 Mauritius

Lead Centre – ICM-14 – Keynote 2 WMO Campaign

- 2010 Yangjiang
- 2022 Lindenberg
 - Joint effort with MCH-Payerne

Lindenberg Meteorological Observatory

Richard-Aßmann-Observatory

Objectives of WMO Radiosonde campaigns

Deutscher Wetterdienst Wetter und Klima aus einer Hand

- To get overview of performance of various operational radiosounding systems
- > Provide information for NMHs, basis for decision-making
- Provides incentive to manufacturers to improve the quality and costeffectiveness of radiosounding systems

- GRUAN-philosophy
 - Laboratory measurements, SHC ground check, reference instruments
- Laboratory campaign
 - Auxiliary, help interpret results of radiosounding intercomparison
 - Mutual benefit manufacturers & GRUAN
 - Results NOT used in final assessment of the systems
- "Common working standard" based on GRUAN data products
 - Independent reference & transfer between rigs
 - Additional reference instrument: CFH (RH)
- Independent operators
 - Capacity building, evaluate user-friendliness of the radiosounding system
 - Independent comparison of radiosounding systems ("blind" intercomparison)

- Laboratory campaign Feb Nov 2022
 - Optimized measurement program to get overview of sensor performance and identify relevant issues.
- Radiosounding campaign August September 2022
- > 12 participants
 - Selected based on criteria such as product maturity, market share, BUFR capacity, compatibility
 - o Finland, France, Germany, Japan, South Africa
 - Russia, China (3), India (2), South Korea
 - First call for participation 2020, repeated in 2021
 - Include manufacturers from emerging markets

Covid-19 & Ukraine

Manufacturer	Model	Country
Aerospace Newsky	CF-06AH	China
Azista Industries Pvt Ltd	ATMS-3710	India
Diel Met Systems (Pty) Ltd		
InterMet Africa	iMet-54-AA	South Africa
GRAW Radiosondes GmbH &		
Co. KG	DFM-17	Germany
JCC "Radiy"		Russia
Meisei	iMS-100	Japan
MODEM	M20	France
	OTC2	
	0155	Crinia
Tianjin Huayuntianyi	HT03G-1U	China
Vaisala Oyj	RS41-SG	Finland
Vikram Sarabhai Space Center	Pisharoty Sonde : PS-B3	India
WEATHEX	WxR-301D	Korea

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

August 2022: Radiosonde types

Courtesy: B. Ingleby

1	Feb	b			N	lar					A	pr				Ma	ai				Jun					Jul					Aug							Se	р		1		C	Okt				1	Nov				
Week	5	6	7	7	8	9	10	11	12	1:	3 1	4 1	15	16	17	18	3 19	9 2	0	21	22	23	24	1	25	26	#	28	29	30	31	1	32			33	34	35	3	37	3	3 3	9	40 4	11	42 4	13	44	45	46	47	48	3 49
	31.1	1 7.2	14.2	2 21	.2 2	8.2	7.3	14.3	21.3	28.	3 4.	4 1:	1.4 1	18.4	25.4	2.5	5 9.5	5 16	.5 2	3.5	30.5	6.6	13.6	5 20	0.6	27.6	4.7	11.7	18.7	25.7	1.8	8	8.8	15	5.8		22.8	8 29.8	в 5.9	12.5	9 19.	9 26	.9 3	.10 10	1.10	7.10 2	4.10 31	.10	7.11	14.11	21.11	28.11	L 5.1
					+																			t																													
											_																																										
	_				+	-					-	-	-			_	-	-	_	_			-	+						-	P	M	anufactur	er					1		1	-	+	-	-	-		_					-
																															r					~80 Ball	oon	asc	ent	5													
				V	ais	ala	3			M	leis	sei				W	eat	the	x				In	ter	rm	et					е	In	stallation		((Regular	; Dı	uplic	ate			A	zis	sta				1	Vikra	am			
				G	ra	N				Μ	loc	ler	n			Ra	adiy	/					Нι	Ja	yur	ntic	any	/i			р	Te	stflights		1	Reference	ce -	CFH	H)			A	er	osp	ac	e			Hua	yur	ntiany	/i	
																															a	Tr	aining	7						1	_												
	_	-	-	-	+	+	+	_	_	-	+	+	+	_		-	-	+		\rightarrow			_	+	_	_	_				r	_		-	_			-	-	-	-	-	+	-	+	-	+	+			б. —		
	-	-	-	2	+	+	+	-		-	+	+	+	-			+	+	1	+			-	+	-		-	-			a t				-		-	-		2	-	-	+	-	+	+	+	+					-
					1																										i																						
	-		-	-	+	+	+	_	-	-	+	+	+	_		-	+	+	-	+			-	+	-	_	-	_		3	0	-		-	-		-	-	-	-	-	-	+	-	+	-	-	-			5	-	-

- Optimized measurement program to get overview of sensor performance and identify relevant issues.
- Results will NOT be used in the final assessment of the systems
- Mutual benefit to manufacturers & organizers
- Radiosonde systems operated by manufacturer
 - Non-standard operation of system requires specialist-knowledge

Characterisation - Laboratory measurements

Deutscher Wetterdienst Wetter und Klima aus einer Hand

2 weeks, 6 measurement days

Radiation

ead Centre

PTU

-3

Lindenberg Meteorological Observatory Richard-Aßmann-Observatory

Lead Centre - ICM-14 - Keynote 2 WMO Campaign

Evaluation laboratory campaign

- > Laboratory measurements went very smooth.
- Very well-received by manufacturers
 - o Eager to perform additional measurements
 - $\circ~$ Adoption of characterisation practices?

Field campaign - preparatory

Deutscher Wetterdienst Wetter und Klima aus einer Hand

- Prior: operator-selection
 - >40 candidates
 - Zoom-interviews -> 10 selected
- \succ Rig construction (80 pc)
- Analysis software (dvas)
- \succ Documentation, policy, CoC,
 - Shipping, local logistics etc.

Field campaign - Time line

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

Aug						Sep					Okt	1			
31	32			33	34	35	36	37	38	39	40	41	42	43	- 44
1.8	8.8		15.8		22.8	29.8	5.9	12.9	19.9	26.9	3,10	10.10	17.10	24 10	31,10
Р	Manufact														
r				~80 Ballo	oon	asce	ents								
е	Installatio	n		(Regular;	; Du	plica	ate	Ī							
р	Testflights	s		Reference	e - 1	CFH))	Ī							
а	Training							Ī							
r															
а															
t															
1															
o															
n															

- > 8 August: Arrival of manufacturers & setting up systems
 - o Antenna locations
- Training of operators
 - Each operator trained to operate 2 systems (2 rigs)
 - $\circ~$ Allocation: no prior experience with system in question
 - \circ 5 parallel classes, operators + campaign staff
 - 1 last-minute cancellation -> replaced by Lindenberg staff
 - Test soundings
 - Concluded in 5 days (additional session during the weekend)
- Last minute preparations
 - Procedures for data collection & validation, metadata protocol, frequency allocation

Logistical challenge

Deutscher Wetterdienst Wetter und Klima aus einer Hand

<image>

Lindenberg Meteorological Observatory Richard-Aßmann-Observatory

16

Frequency allocation

Deutscher Wetterdienst Wetter und Klima aus einer Hand

- > 10 participants + GDP sondes
- ➢ 0.2 MHz separation

- Discrete frequency selection
- Initial/default frequencies

DWD network

Order for switching-on sondes

402.0	402.1	402.2	402.3	402.4	402.5	402.6	402.7	402.8	402.9	
VIK	Mei		HGW	Rig1_3	Weath	Vais	Aeros	Tian	Rig2_2	
					Schl1		Kumbr			
403.0	403.1	403.2	403.3	403.4	403.5	403.6	403.7	403.8	403.9	
х	X	N	liltär Mob	oil	x	x	x	X		
404.0	404.1	404.2	404.3	404.4	404.5	404.6	404.7	404.8	404.9	
Rig1_2		Imet	Azist		LIN2		HGW2	Rig2_3	Graw	
			Schl2						Kumbr	
405.0	405.1	405.2	405.35	405.4	405.5	405.6	405.7	405.8	405.9	
	LIN1		GDP_V			GDP_M	Berg	Mod	Berg	
		9								

16 August – 13 September

Rig composition:

- > 5 participants
- Working standard, composed of 2 GRUAN Data Products Vaisala RS41-SGP, Meisei iMS-100 (separate radiosondes)
- 1-2 duplicate sondes

- Occasionally include descent data
- weekly CFH sounding with working standard only

- > 8h Weather briefing, rig trajectory [Supervisor]
 - Supervisor(s) determine rig composition, starttimes, assign frequencies, balloon lift
- > 9h operator briefing
 - $\circ~$ Sonde preparation, SHC check, protocolling, rig balancing, sonde attachment

Keynote 2 WMO Campaign

- 10h launch
 - o Burstpoint
 - Data collection & validation
- ➤ 14h 2nd briefing
- > 15h 2nd launch

Night shift (start 18h)

Deutscher Wetterdienst

Lead Centre – ICM-14 – Keynote 2 WMO Campaign

Lindenberg Meteorological Observatory Richard-Aßmann-Observatory

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

- ➢ 79 soundings
- Per manufacturer
 - >18 daytime; > 4 twins
 - \circ >16 nighttime; >3 twins

Ample statistics

ead Centre

0 Weather conditions

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

Lead Centre - ICM-14 - Keynote 2 WMO Campaign

Lindenberg Meteorological Observatory Richard-Aßmann-Observatory

22

- Lead by Frederic Vogt
- > DVAS analysis plots available to campaign staff & operators
- > Topic of the day
- Enhance campaign feeling

Satellite overpasses

Deutscher Wetterdienst

22 overpasses within 72 mins of sounding

Satellite	Nadir	SEA	Overpass	Balloonlaunchtime
NOAA20	6.16	50.84	2022-08-17T11:37:35	2022-08-17T11:47:53
METOP-C	6.00	-12.57	2022-08-17T19:54:00	2022-08-17T19:32:14
METOP-C	16.95	-10.41	2022-08-18T19:33:16	2022-08-18T19:04:42
METOP-C	6.41	45.63	2022-08-19T09:24:45	2022-08-19T07:59:24
METOP-C	2.04	-13.75	2022-08-22T19:50:29	2022-08-22T19:03:13
METOP-C	20.36	-11.57	2022-08-23T19:29:45	2022-08-23T18:54:18
NOAA20	4.29	-20.76	2022-08-24T01:17:33	2022-08-24T00:58:32
METOP-C	23.60	-12.80	2022-08-28T19:26:14	2022-08-28T18:44:46
METOP-C	1.52	42.06	2022-08-29T09:17:42	2022-08-29T08:10:10
METOP-C	23.76	39.73	2022-08-30T08:56:54	2022-08-30T07:58:41
METOP-C	17.27	-18.42	2022-08-31T20:04:12	2022-08-31T18:51:21
NOAA20	14.65	44.85	2022-09-01T11:56:08	2022-09-01T11:05:05
METOP-C	5.90	-16.33	2022-09-01T19:43:26	2022-09-01T18:30:00
NOAA20	6.40	45.24	2022-09-02T11:37:16	2022-09-02T11:54:00
METOP-C	13.57	-19.83	2022-09-05T20:00:40	2022-09-05T19:04:18
NOAA20	20.97	42.64	2022-09-06T12:02:19	2022-09-06T12:52:23
METOP-C	9.78	-17.70	2022-09-06T19:39:53	2022-09-06T18:39:30
NOAA20	0.61	43.14	2022-09-07T11:43:26	2022-09-07T12:30:20
NOAA20	19.61	43.32	2022-09-08T11:24:37	2022-09-08T11:55:18
NOAA20	7.59	40.94	2022-09-12T11:49:36	2022-09-12T11:55:25
METOP-C	13.35	36.37	2022-09-13T09:07:03	2022-09-13T08:09:26
NOAA20	13.38	41.23	2022-09-13T11:30:46	2022-09-13T11:49:44

Very successful

- Impact of global events
 Covid-19, Ukraine
- Ambitious goals
 - Laboratory campaign
 - o Independent operators
 - New data analysis system
 - o GDPs as working standard
 - o Remote sensing systems, satellite, aircraft

Independent operator concept successful

 $\circ~$ Well-received by manufacturers

Visit by presidents WMO/DWD & MCH

GRUAN-

- Laboratory campaign well-received
 - Optimal timing: after field campaign?
- Logistical issues
 - \circ incomplete equipment, shipping

Team effort

- Very good atmosphere in campaign team. Great willingness to cooperate & improvise when necessary
- Data release after publication of report (September 2023)

DWF

Half way mark

Write Report

Meteoswiss/G.Romanens/22.11.2022

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

DWD in situ sounding group

Ruud Dirksen Michael Sommer Christoph von Rohden Tzvetan Simeonov Peter Oelsner

Susanne Körner Marion Fiedler-Krüger Rico Tietz Helge Friedrich Tatjana Naebert

МСН

Alexander Haefele Gonzague Romanens Gianni Martucci Frederic Vogt Christian Felix DWD Jens Hülskötter Dirk Jantze Karsten Schwebe Robert Begbie Katrin Jantze Sabrina Konopka Madlen Kaminsky Norbert Hoche Michael Schwebe Kersting Wallro Jörg Karpinski

Associate Stella Dietze

Holger Vömel

WMO Kruno Premec Isabelle Ruedi

Operators

Savitri Gangadeen Zeinab Sayed Fahmy Wayne Pene Sonny Pajarilla Norman Duri Quyen Nguyen Thi Bassem Lajnef Josette Jhabeemissur Nontobeko Langa Sven-Olaf Körner

https://www.gruan.org/community/campaigns/uaii2022

Manufacturers

Benjamin Charpentier Antoine Farah Christophe Raux **Rémy Gautier Benjamin Finot** Eden Evans Samuel Kingstone **Binilroy Thankappannair** Sumangalabai Matti Lehmuskero Arup Dey Hannu Jauhiainen Johannes Saarinen Tapio Tikkanen | Wenwu Peng Xiaojie Huang Meilin Kuai **Jiangiao Huang** Narendra Solanki Raghavendran Vedam Niraj Shah

Andrew Spencer Michael Talbot Jong Chen Yopme Panzer Alexander Kotik Johannes Frielingsdorf Jens Seifert Guido Cedrone Stefan Fellner Kensaku Shimizu Rorio Nagahama Jaewon Solanki Ujin Jeong

https://www.gruan.org/community/campaigns/uaii2022