

GNSS-PW GDP FORMATS AND METROLOGICAL CLOSURE WITH RADIOSONDES

Galina Dick, GNSS-PW Task Team, Florian Zus, Jens Wickert, Benjamin Männel, Markus Bradke, Markus Ramatschi

GFZ German Research Centre for Geosciences, Potsdam, Germany

Sessions 10-3 and 10-4, GRUAN ICM-14, December 2, 2022, Reunion Island

GNSS: Global Navigation Satellite Systems

GPS (USA): 31 satellites

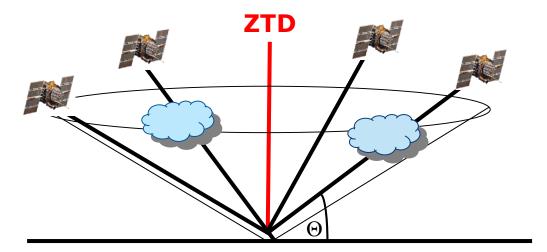
GLONASS (Russia): 24 satellites

Galileo (EU): 28 satellites

BeiDou (China): 35 satellites

QZSS (Japan, regional): 4 satellites

More than 120 satellites in the sky



HELMHOLTZ

Dick et al., ICM-14 2

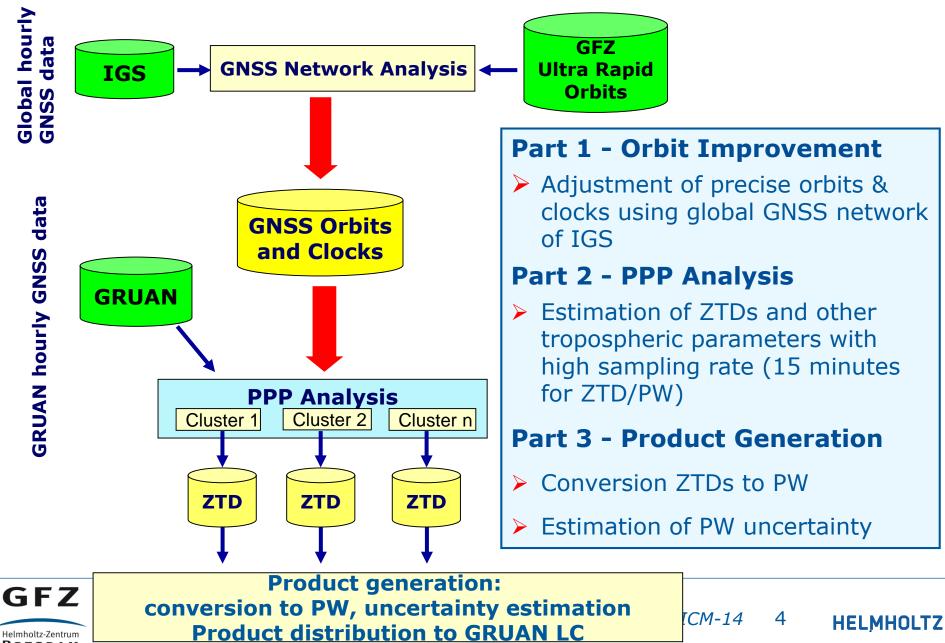
GNSS-derived Precipitable Water Vapor

Isotropic water vapor distribution & known mapping function ($\sim 1/\sin \Theta$)

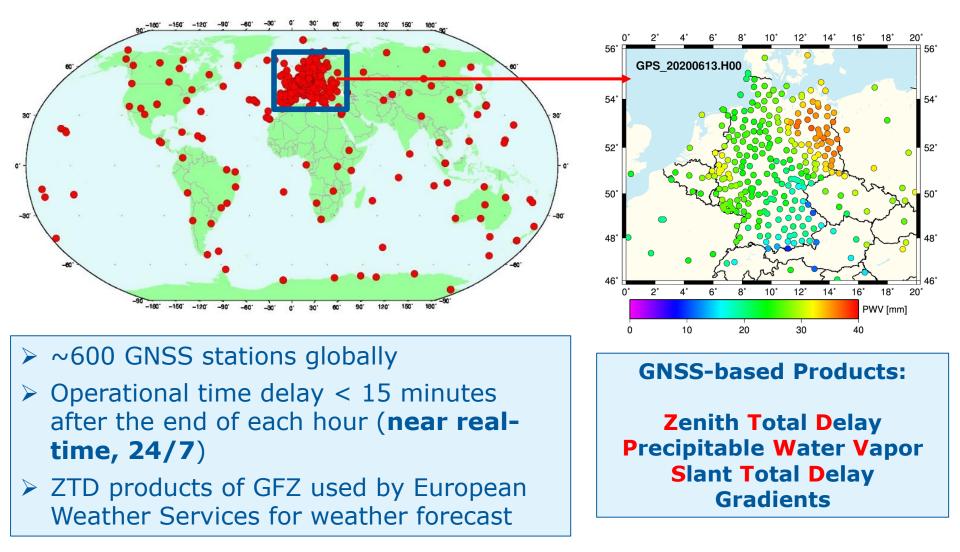
Additional: pressure and temperature at the station for conversion of ZTD to PW

Result of GNSS data analysis: Zenith Total Delay (ZTD) with mm-accuracy

	dry, hydrostatic	2	wet				
ZTD =	ZHD	+	ZWD				
ZHD = f (pressure) [±1 mm accuracy]							
$\mathbf{PW} = \mathbf{\Pi} (\mathbf{T}_{m}) \bullet \mathbf{ZWD}$							

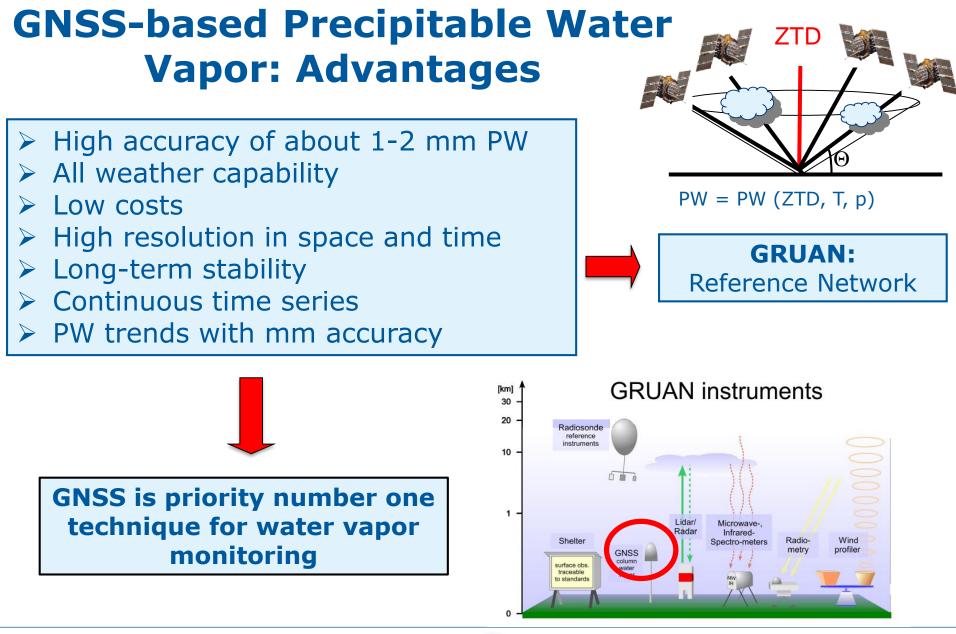

Converted Precipitable Water Vapor (PW)

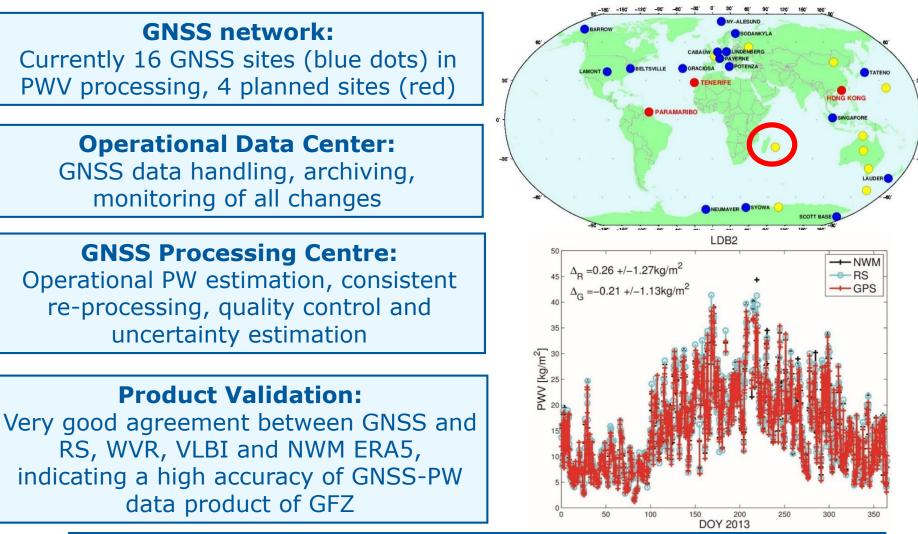
GRUAN Dick



GNSS Processing with GFZ EPOS.P8 Software

Helmholtz-Zentrum POTSDAM


Operational GNSS-PW Monitoring at GFZ


Dick et al., ICM-14 5

Dick et al., ICM-14 6 HELMHOLTZ

GFZ Contribution to GRUAN: GNSS-PW

Start of **certification** of GFZ GNSS-PW products as GDP in 2021

Dick et al., ICM-14

7

Operational Data Centre (ODC) at GFZ

- > Operational since 2018
- Ability to process all GNSS related data
- Data passes quality check before GNSS data analysis
- Monitoring of station behaviour
 - operational comparison of measured temperature and pressure at GNSS site with ERA5 for monitoring of meteo sensor (new after ICM-13)
 - feedback for station operators
- Short data processing latency (< 1 minute per station)</p>

Courtesy: M.Bradke

HEI MHO

8

Dick et al., ICM-14

GNSS-PW GDP Formats

Dick et al., ICM-14 9

GNSS-PW GDP Formats at GFZ

SINEX-TRO (IGS):

- daily file per site
- COST 716 (COST Action 716):
 - hourly (NRT mode) or daily (repro) file per site
 - developed by European Weather Services for operational assimilation

NEW after ICM-13:

ASCII (GFZ):

GFZ

Helmholtz-Zentrun

one file per year and site, easy to read

NetCDF (GFZ/DWD (M. Bender):

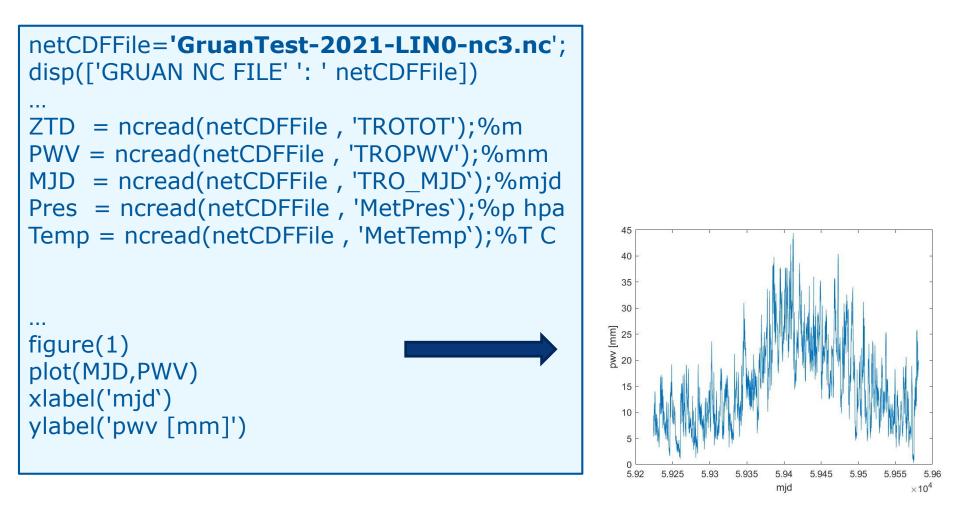
nc3 and nc4

Dick et al., ICM-14 10

GNSS-PW GFZ ASCII Example

Dick et al., ICM-14 11 HELMHOLTZ

ASCII file LINOPWV_2021.txt


Time [sec] ZTD [mm] PWV [mm] p [hPa] T [k]

LIN0_A21:001:00450	2316.4	9.5	990.7	275.6
LIN0_A21:001:01350	2317.1	9.6	990.7	275.6
LIN0_A21:001:02250	2316.3	9.5	990.7	275.6
LIN0_A21:001:03150	2315.0	9.3	990.7	275.6
LIN0_A21:001:04050	2314.5	9.3	990.6	275.7
LIN0_A21:001:04950	2315.1	9.4	990.6	275.7
LIN0_A21:001:05850	2316.2	9.5	990.6	275.7
LIN0_A21:001:06750	2316.9	9.6	990.6	275.7
LIN0_A21:001:07650	2316.0	9.5	990.7	275.8
LIN0_A21:001:08550	2316.4	9.5	990.7	275.8
LIN0_A21:001:09450	2316.9	9.6	990.7	275.8

....

GNSS-PW NetCDF Example

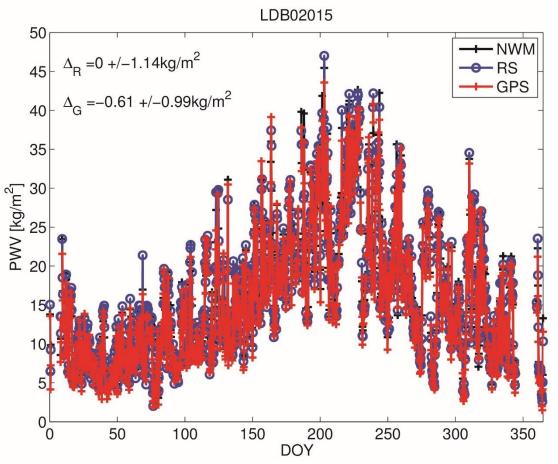
Dick et al., ICM-14

12

NetCDF: Open Questions

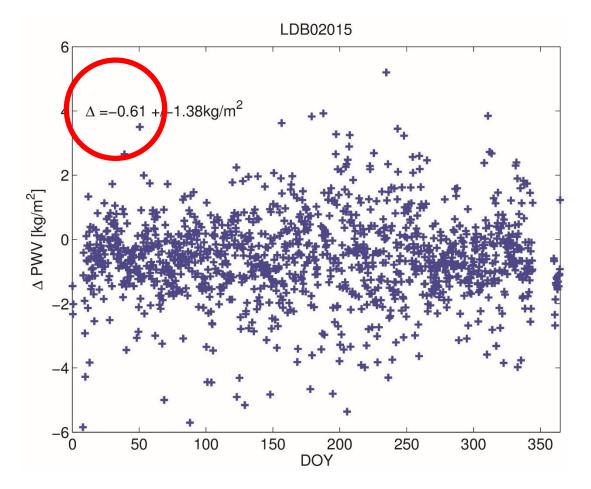
- Separate file for each GRUAN site?
- Yearly/monthly/daily files?
- Only for re-processed products or also for NRT?
- nc3 and/or nc4?
- Include also the gradients or ZTD/PW only?
- Header information

HEI MH


Metrological Closure of GNSS-PW GDP and RS

Validation of GNSS-PW with RS for Lindenberg (LDB0) for 2015

Dick et al., ICM-14

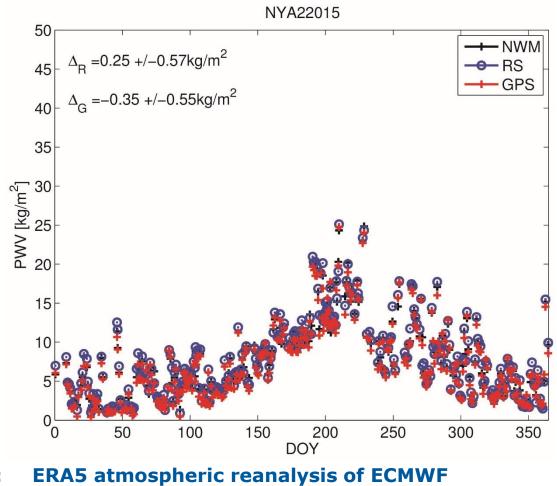

15

HELMHOLTZ

Black:ERA5 atmospheric reanalysis of ECMWFBlue:GRUAN RS product (RS92 GDP)Red:GNSS solution of GFZ

GFZ Helmholtz-Zentrum POTSDAM

Validation of GNSS-PW with RS for Lindenberg (LDB0) for 2015

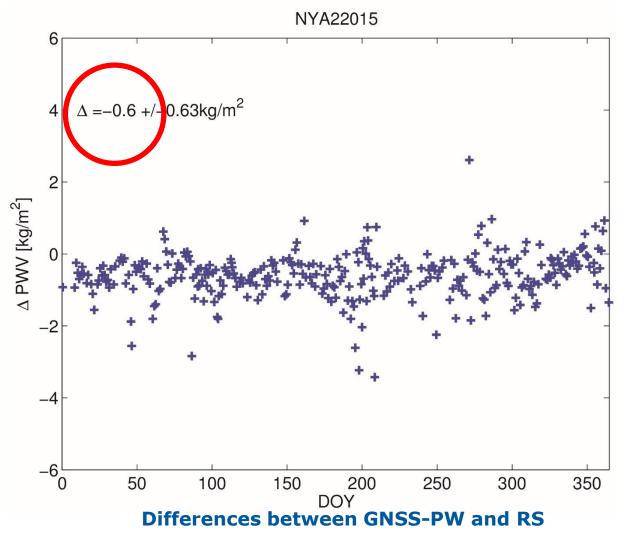


Differences between GNSS-PW and RS

Dick et al., ICM-14 16 HELMHOLTZ

Validation of GNSS-PW with RS for Ny-Ålesund (NYA2) for 2015

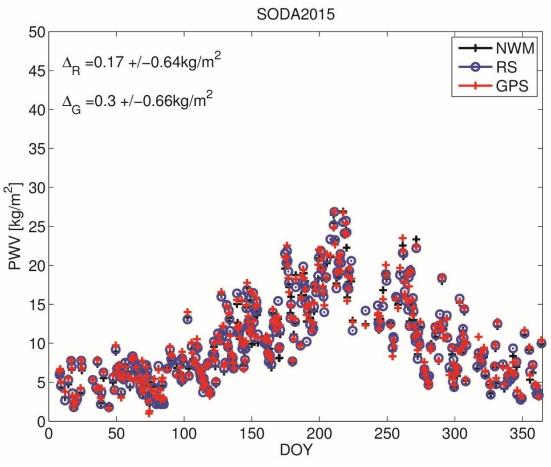
Black: Blue: Red:


k: ERA5 atmospheric reanalysis of ECMV
 GRUAN RS product (RS92 GDP)
 GNSS solution of GFZ

AN Dick et al., ICM-14

CM-14 17

Validation of GNSS-PW with RS for Ny-Ålesund (NYA2) for 2015



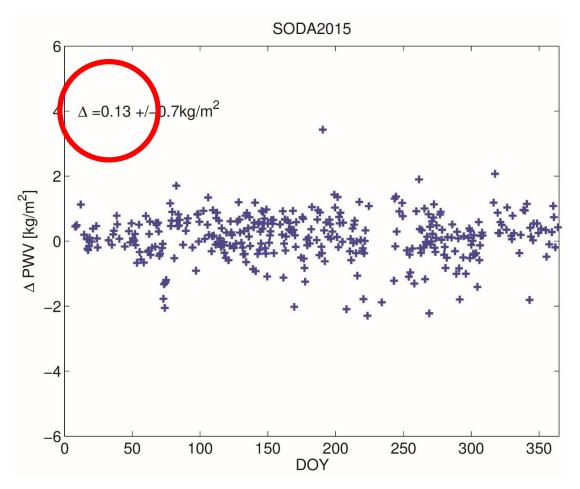
¹⁸ HELMHOLTZ

Dick et al., ICM-14

Validation of GNSS-PW with RS for Sodankylä (SODA) for 2015

Black: Blue: Red:

k: ERA5 atmospheric reanalysis of ECMWF GRUAN RS product (RS92 GDP) GNSS solution of GFZ



Dick et al., ICM-14

HELMHOLTZ

19

Validation of GNSS-PW with RS for Sodankylä (SODA) for 2015

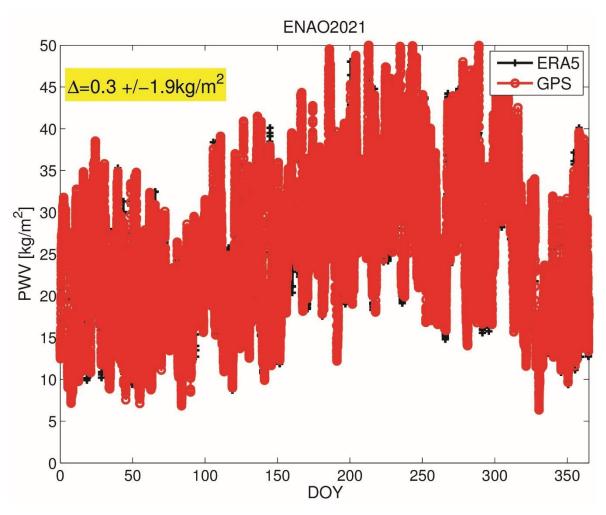
Differences between GNSS-PW and RS

Dick et al., ICM-14

HELMHOLTZ

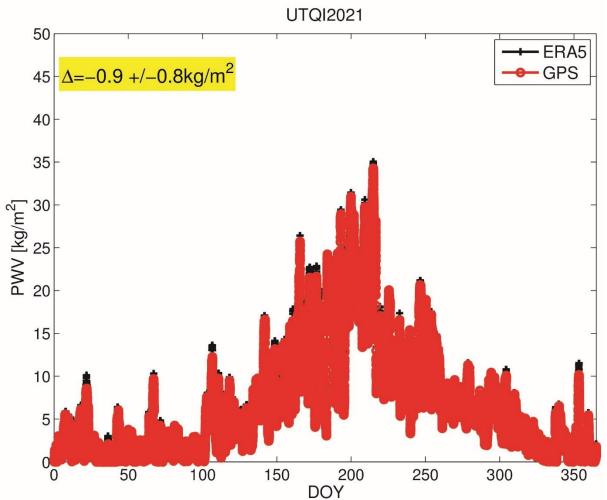
20

GNSS-PW Validation with ERA5 of ECMWF


Daily updated validation plots are available at ftp://ftp.gfz-potsdam.de/GNSS/products/nrttrop/MONITORING_IFS/

Dick et al., ICM-14 21

PW for Graciosa Island


Validation with ERA5 for Graciosa Island (ENAO) for 2021

Dick et al., ICM-14

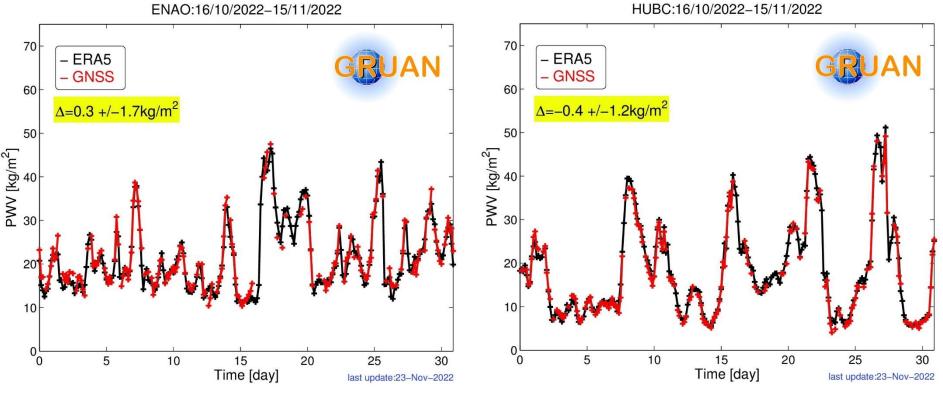
22

PW for Barrow

Validation with ERA5 for Barrow (UTQI) for 2021

RUAN Dick et al., ICM-14 23 HELMHOLTZ

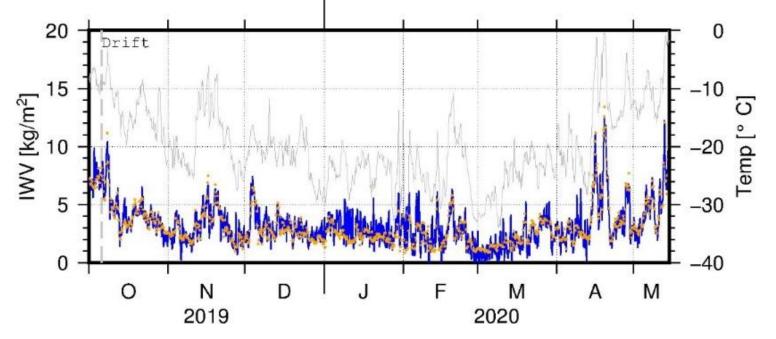
Statistics GNSS-PW minus ERA5 2021


SITE ID	BIAS (mean -0.3 kg/m2)	STDDEV (kg/m2)
CBW1	- 0.5	+/- 1.4
ENAO	0.3	+/- 1.9
LDB2	- 0.7	+/- 1.1
LINO	- 1.1	+/- 1.1
LDZR	- 0.7	+/- 1.5
NYA2	- 0.3	+/- 0.7
PAYE	- 0.3	+/- 1.3
SGPO	- 0.3	+/- 1.8
SMS1	- 0.1	+/- 2.2
SODA	0.2	+/- 0.8
SODF	0.9	+/- 0.9
SYOG	- 0.2	+/- 0.5
TSK2	- 0.6	+/- 1.6
UTQI	- 0.9	+/- 0.8

JAN Dick et al., ICM-14 24

PW for Graciosa (ENAO) and Beltsville (HUBC)

ENAO


HUBC

Operational validation with ERA5 for ENAO and HUBC, Nov 2022

RUAN Dick et al., ICM-14 25 **HELMHOLTZ**

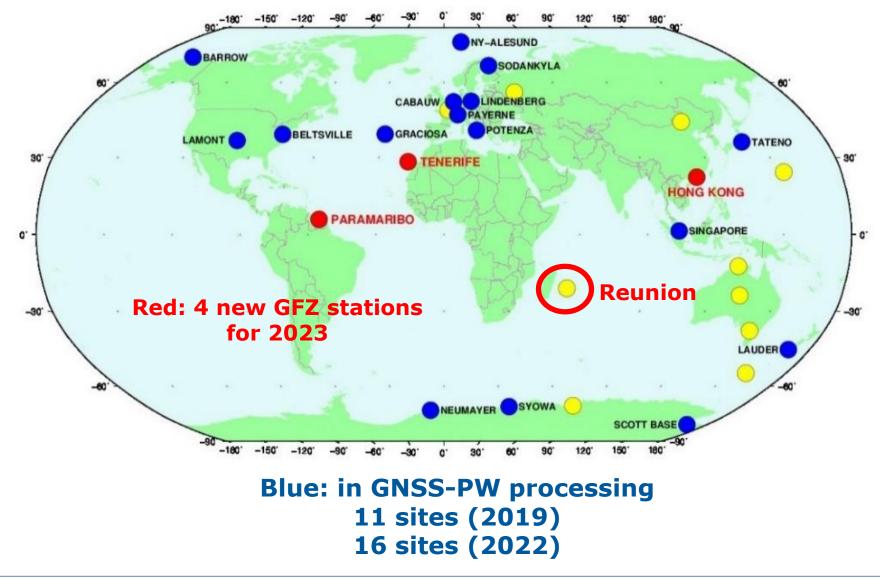
"MOSAIC": Water Vapor Results

GNSS-based PW, radiosonde-based PW (AWI), temperature (ERA5)

- GNSS tracking was done fully autonomous using the GFZ developed tiny/PC3 and GORS receivers
- GNSS-based water vapor was compared to ERA-5, GNSS and VLBI coastal stations and frequent radiosonde measurements Männel et al., 2021; ATM

Dick et al., ICM-14

26


Status of GNSS Sites

GRUAN GNSS Network

Dick et al., ICM-14 28 HELMHOLTZ

Status GNSS-PW Processing

> 16 from 31 stations in GNSS-PW processing chain:

- Lindenberg (LDB0, LDB2, LIN0)
- Ny-Ålesund (NYA2, NYAL, NYA1)
- Sodankylä (SODF, SODA)
- Lauder (LDRZ)
- Barrow (UTQI)
- Graciosa (ENAO)
- Lamont (SGPO)
- Beltsville (HUBC)
- Singapore (SMM1, SMS1)
- Payerne (PAYE)
- Cabauw (CBW1)
- Ross Island (SCTB)
- Tateno/Tsukuba (TATN, TSK2)
- Syowa (SYOW)
- Neumayer (NMSH) no PW-GDP, work in progress
- Potenza (TITO) no PW-GDP, work in progress

Re-processing with new PW uncertainty estimation:

- done for 2019
- ongoing for 2018, 2020, 2021

UAN Dick et al., ICM-14 29

Status Selected GNSS Sites (1)

Tsukuba (TSK2):

- site close to Tateno
- operational hourly processing since 2021

Potenza (TITO):

- some technical issues have to be solved
- not in processing

Sodankylä (SODA, SODF):

no meteo data, work in progress

Cabauw (CAB1):

no meteo data, work in progress

Syowa (SYOW):

only in re-processing mode

Dick et al., ICM-14 30

HFI MH

Status Selected GNSS Sites (2)

Singapore (MSS1, SMS1):

renamed from MSS1 to SMS1 in 2022

Lindenberg (LINO):

- replacement of GFZ site LDB0 with LIN0 (2020)
- LDB2 the second GNSS station in Lindenberg

Neumayer (NMSH):

- GRUAN site in Antarctica, operated by AWI/GFZ
- data flow to GFZ, not in operational PW processing yet
- some problems with processing should be solved

Boulder:

moving GNSS to Marshall Field still pending

Marshall, Boulder (BOU, USA)

- > TMS3 (close to Boulder) closed in October 2018
- New GNSS site should be installed on GRUAN site BOU (Marshall Field Test Site)
- MoU between NCAR and GFZ signed
- GNSS hardware was planned to be installed by GFZ in summer 2019, still pending

Planned GNSS Stations after ICM-14

Planned to be installed in 2023:

- Tenerife (Spain): intend to install own GNSS receiver
- Paramaribo (Suriname): GFZ visited Paramaribo Jan 2022

Planned to be included to PW GDP:

- > Reunion:
 - GNSS data will be included to PW processing at GFZ
 - negotiated during visiting Maido observatory (thanks to Joel van Baelen and his team)
- Other GRUAN sites will be contacted by GFZ and PW TT: Paris, Xilinhot, Dakar, Hong Kong

Dick et al., ICM-14 33

HEI MHC

Paramaribo (PMO, Suriname)

- GFZ Department Director Prof. Schuh visited Meteorological Service of Suriname in January 2022
- GFZ ordered GNSS receiver
- Installation planned for 2023

Planned GNSS Stations

GFZ offers to install and operate GNSS receivers on GRUAN sites

> Requirements:

- power supply
- internet connection
- adequate antenna installation site

Could be interesting for Dakar?

Dick et al., ICM-14 35

Australia: pending

Negotiations with Geoscience Australia

UAN Dick et al., ICM-14 36

GNSS-PW GDP Summary

- Automatic hourly GNSS raw data flow and PW analysis including new uncertainty estimation established at GFZ (24/7)
- Data flow to LC
- Continuous re-processing and validation with RS, WVR and NWM
- Monitoring of product quality
- Development of NetCDF (first version available)
- Start of certification of GNSS-PW as GDP in 2021

Dick et al., ICM-14 37

HELMH

Future Work

- Re-processing with new PW uncertainty estimation for the whole time period 2011-2022
- > Ongoing validation with RS, WVR and NWM
- Including of new GNSS sites to GNSS-PW GDP
- Finalization of NetCDF
- Providing of GNSS-PW GDP in all formats
- Finalization of certification of GNSS-PW GDP

Dick et al., ICM-14 38

HEI MHC

GFZ Products on FTP

Available in SINEX-TRO and COST 716 Formats

GRUAN NRT:

ftp://ftp.gfz-potsdam.de/GNSS/products/nrttrop/

sinex_trop_GRUAN_EPOS8/w****
product_GRUAN_COST_EPOS8/y****/m**

REPRO:

ftp://ftp.gfz-potsdam.de/GNSS/products/nrttrop/REPRO/

sinex_trop_EPOS8/w****
product_COST_EPOS8/y****/m**

Dick et al., ICM-14 39

Acknowledgements/Cooperation Partners

Many thanks for your attention!

Dick et al., ICM-14

40