Ozonesondes GDP progression

Holger Vomel (NCAR) Richard Querel (NIWA)

GRUAN ICM14 2 December 2022

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

ASOPOS report

- Assessment of Standard Operating Procedures for Ozonesondes (ASOPOS) panel
- Just published by WMO/GAW GAW report 268
- Defines the best practices for the global ozone sonde network
- Was written with GRUAN in mind
- Look at presentation from last year for roadmap
 https://www.gruan.org/gruan/editor/documents/meeting

https://www.gruan.org/gruan/editor/documents/meetings/i cm-13/pres/pres 110 Voemel Ozone-GDP.pdf

GAW Report No. 268

Ozonesonde Measurement Principles and Best Operational Practices

ASOPOS 2.0

(Assessment of Standard Operating Procedures for Ozonesondes)

August 2021

GRUAN ECC product will build on GAW report 268
 → GRUAN ECC stations will follow GAW operational procedures

- Establish traceability to become less dependent on manufacturer
- Remove/minimize known systematic biases, which are ignored in standard processing
- GRUAN ECC product will become anchor observation for all other stations
 → Identify potential issues early
- Make sure that GRUAN stations provide homogeneous data set, despite heterogeneous instrumentation -> Centralized processing

Brief roadmap for updated GRUAN ECC data product

- Existing and new stations will follow GAW 268 recommendations for ozonesondes and continue their best practices
- Stations participating in GRUAN ozonesondes must collect all required, essential, and desired metadata specified in metadata appendix of GAW 268
- High quality ozone destruction filter (or "zero" air) during preparation (GAW 268)

In addition: Ozone sonde station participating in GRUAN ozone

- Must use manufacturer independent ground check for ECC ozone sondes, which is suggested in GAW 268 (need multiple sites for different manufacturers and solutions)
- Work on measuring individual pump efficiencies

Brief roadmap for updated GRUAN ECC data product

In processing: Implement time response correction locally

• Empirical ("pump") efficiencies will be separated into

- True pump efficiency
- Stoichiometry factor
- Time response correction
- "Background current" will be deprecated
- Pre-launch data are used in processing
- Uncertainty budget in processing needs to be worked out following GAW 268 and new processing steps

ECC – OMI Total Ozone EnSci SST0.1 Costa Rica

ECC drop-off at other stations

From: Stauffer et al., 2022

Unexpected change at EnSci

- ECC community was surprised by drop off
- Two factor challenge:
 - a) Production change at Manufacturer
 - b) affecting only low buffered sensing solutions
- Current uncertainty estimates are incorrect
- ECC community has (almost) no tool to evaluate accuracy issues prior to launch

SHADOZ network: EnSci ECC (SST0.1) – OMI comparison

SHADOZ network: SPC ECC (SST1.0) – OMI comparison

→ ECC community needs manufacturer independent ground check

ECC conditioning prior to launch

Boulder: manual check at 100 ppbv after sonde conditioning

Payerne: automatic check at ~230 ppbv during sonde conditioning

ECC

-> Correction factor just stored, not applied, following GAW

Lauder: automatic check at ~100 ppbv prior sonde conditioning So far: functionality check only no quantitative comparison

- Current ground check data too short and too limited to address changes at using EnSci or SPC ozone sondes
- But ground check shows promise to evaluate changes

Propose to coordinate existing ground checks to overcome the lack of understanding of manufacturer changes

Pump efficiencies

Pump Efficiencies

Current processing: Mix physical and chemical efficiency corrections in one single "empirical" efficiency, depending on manufacturer and solution

٠

- Need to use pump efficiency to correct behavior of pump (well understood)
- Chemical stoichiometry is considered separately

Pump Efficiency Measurements

Nakano, T. and Morofuji, T.: Development of an automated pump efficiency measuring system for ozonesonde utilizing the airbag type flowmeter, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-565, 2022

Pump efficiency measurements

Nakano, T. and Morofuji, T.: Development of an automated pump efficiency measuring system for ozonesonde utilizing the airbag type flowmeter, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-565, 2022

Time response correction

Time response correction for Jülich Ozone Sonde Intercomparison Experiment

Average of 77 simulation experiments in the Jülich Environmental Chamber, 2017

- Continue draft of GRUAN Ozonesonde Technical Document
- Agree on best manufacturer independent ground check (ozone calibrator, e.g. Boulder, Lauder, Payerne, Lindenberg)
- Work on implementing pump efficiency measurement
- Define GRUAN processing algorithms based on GAW 268 with updated time response correction -> work out manual flagging