

Flash update on:

Progress towards a Microwave Radiometer GRUAN Data Product (MWR GDP)

TT Ground-based: Nico Cimini, Maria Cadeddu, Christine Knist, Fabio Madonna, Gianni Martucci, Christoph Ritter

ACTRIS: Bernhard Pospichal, Tobias Böck

E-PROFILE: Rolf Rüfenacht

Why a GRUAN MWR product?

Microwave Radiometer (MWR) provides:

- Low-resolution Temperature and Humidity profiles
- Column-integrated water vapor + liquid water (IWV, LWP)
- Continuous measurements at
 - ~1 min temporal resolution
 - ~all weather

With respect to radiosondes:

- Highly redundant (though much lower vertical resolution)
- Independent (e.g. crucial for detecting the RS80 dry bias)
- Complement diurnal cycle
- Provide LWP (no other GRUAN instrument)

What's the status of MWR GDP?

- GRUAN MWR Tech Doc (Programme Guide) exist
 - Reviewed internally, but never published
 - Updates needed once the MWR GDP is more established
- Three EU initiatives are actively cooperating to progress towards MWR networking
 - ACTRIS: EU (distributed) research infrastructure long term
 - E-PROFILE: Profiling programme of EUMETNET NWP oriented
 - PROBE Cooperation COST Action
- It seems natural to follow this development for MWR GDP
 - Several EU GRUAN sites are in ACTRIS
 - Keeping in mind GRUAN requirements
- Procedures may be extended to GRUAN sites outside EU (TBC)

ACTRIS Cloud Remote Sensing

Ref: Bernhard Pospichal, U. Köln


ACTRIS (Aerosol, Cloud and Trace Gases Research Infrastructure)

- Research Infrastructure currently being established
- MWR are essential part of ACTRIS Centre for Cloud Remote Sensing (CCRES)
- Currently ~ 20 MWR are operational at ACTRIS sites
- until 2025 > 30 MWR will be installed

Within CCRES, University of Cologne and JOYCE (Jülich Observatory for Cloud Evolution) are hosting the MWR centre of expertise

Ref: Bernhard Pospichal, U. Köln

CCRES MWR centre of expertise

- Develop MWR data processing chain (including QC)
- Give recommendations and minimum requirements for MWR operators concerning measurement setup, calibration, maintenance, etc.
- Workshops and hands-on training for MWR operators regarding calibration and data handling
- Ensure homogeneous MWR Level2 data across network
- Near real-time online monitoring of data and data quality
- ACTRIS MWR quality assessment (2021-2023)
 - Calibration uncertainty

Ref: Tobias Böck, U. Köln

ACTRIS MWR quality assessment (2021-2023)

- Total maximum uncertainty considering:
 - bias (difference between two collocated calibrated instruments)
 - calibration drifts between calibrations
 - calibration repeatability (differences after consecutive calibrations)

Results available on a PROBE Technical Report

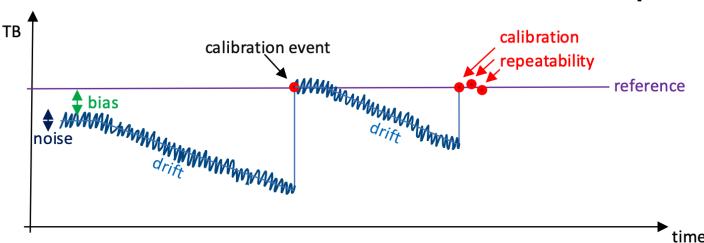
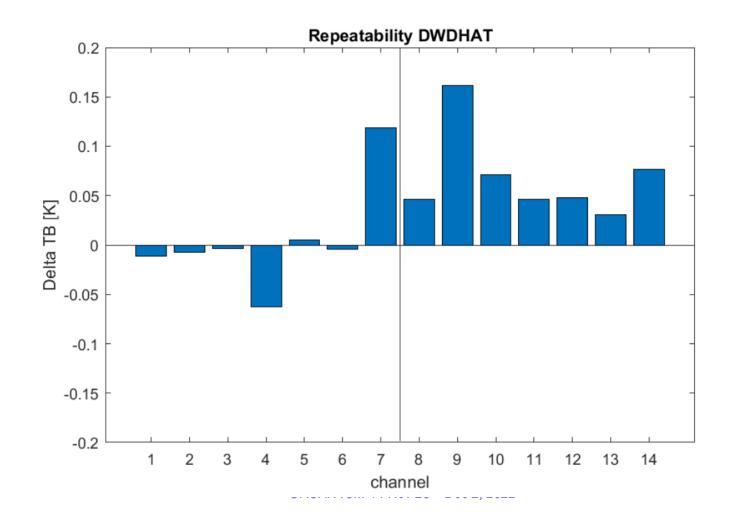


Figure 1: Sketch showing an overview of the HATPRO instrument uncertainties (calibration repeatability, noise, drifts, biases) over time.

Ref: Tobias Böck, U. Köln

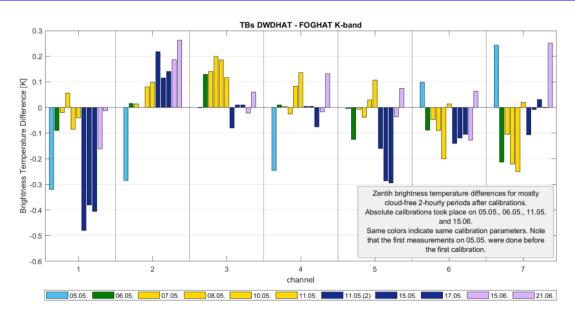
Calibration drift: Drifts are determined as TB differences at the coldload target before and after a LN2 calibration

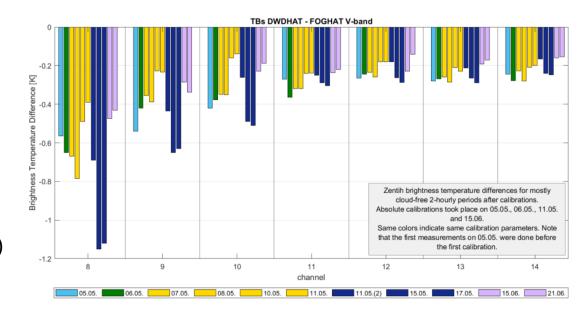
Table 4: Drifts per channel for TOPHAT in Jülich. Crossed out values did not make it into the final assessment due to suspected measurement problems.


DRIFTS PER 6 MONTHS [K]	May2019	Jul2019	Dec2019	Oct2020	Mar2021	Jul2021	abs. mean
Channel 1	-0.04	-0.02	0.22	-0.02	0.14	0.08	0.09
Channel 2	0.06	-0.11	-0.23	0.16	0.41	-0.12	0.18
Channel 3	-0.04	-0.10	-0.07	-0.06	0.39	0.03	0.12
Channel 4	0.002	0.03	-0.27	-0.03	0.36	-0.05	0.12
Channel 5	0.13	-0.78	0.57	-0.01	0.26	-0.10	0.31
Channel 6	0.47	-1.80	2.06	0.26	0.61	-1.20	1.06
Channel 7	0.10	-0.06	0.02	-0.03	0.30	-0.45	0.10
Channel 8	-0.56	-0.85	-0.27	-0.18	0.26	-0.70	0.42
Channel 9	-0.75	-0.04	-1.23	-0.75	-0.09	-2.06	0.57
Channel 10	-0.60	0.05	-0.41	-0.41	0.06	-1.25	0.31
Channel 11	-0.92	-0.33	-0.81	-0.59	-0.01	-1.87	0.53
Channel 12	-1.21	-1.24	0.65	-0.83	0.02	-3.47	0.79
Channel 13	-1.11	-1.28	-0.37	-1.09	-0.21	-2.56	0.81
Channel 14	-0.91	-0.31	-0.45	-0.71	-0.04	-2.45	0.48

Ref: Tobias Böck, U. Köln

Calibration repeatability: determined via changes to zenith reference measurements after two immediate consecutive calibrations


Ref: Tobias Böck, U. Köln


Bias: Systematic differences

between two collocated

instruments

K-band (22-31 GHz)

V-band (51-58 GHz)

Ref: Tobias Böck, U. Köln

Table 6: Summary of instrument uncertainties for Gen5 HATPROs. Uncertainties are described as absolute level 1 TBs.

Type of Error	Typical Error Values K-band	Typical Error Values V-band	Determined via	Error in- fluenced by hand- ling?	How to reduce Error?	Should be dermined by the operator
Calibration Repeatability	≤ 0.12 K	≤ 0.16 K	Changes to zenith reference measurements after two immediate consecutive calibrations	yes	Qualtity of calibration	no
Noise Levels (3min coldload – 10 min hot- load) (1s)	≤ 0.11 K - 0.19 K	≤ 0.11 K - 0.33 K	Standard deviation (from covariance matrix diagonal)	no	Not pos- sible, in- strument specific	yes
Drifts (over 6 months)	usually ≤ 0.3 K (up to 0.78 K)	usually ≤ 0.8 K (up to 1.3 K)	Differences at coldload before and after a cali- bration	can be	Frequency of calibra- tion	yes
Biases	mostly ≤ 0.3 K (up to 0.48 K)	mostly ≤ 0.5 K (up to 1.15 K)	Zenith measure- ment differences between two MWRs	yes	Quality of calibration	no

Ref: Bernhard Pospichal, U. Köln

ACTRIS MWR operation training school

 3-day training workshop held at Jülich for MWR operators in European networks (ACTRIS / PROBE / E-Profile)

Ref: Bernhard Pospichal, U. Koeln

ACTRIS MWR data processing

- Lined up a procedure for calibration uncertainty
- Updated QC routines (spectral consistency, etc.)
- Developed processing routine for MWR data (Python)
 - Consistent with E-Profile MWR data format
- Trained few EU MWR operators
- Outlook for 2023:
 - Development of common retrieval framework
 - Implementation of processing routines at ACTRIS data centre for all ACTRIS cloud remote sensing stations

Updates on MWR activities

Chances for non-EU GRUAN MWR programs to join ACTRIS/E-PROFILE Cannot promise anything yet, but:

- ACTRIS/CCRES <u>might</u> be able to accept non-EU GRUAN MWR in their processing (if they run RPG or Radiometrics)
 - Several EU GRUAN stations are already within ACTRIS (all?)
- E-PROFILE first development (pilot network) limited to EU stations.
 - Afterwards, the focus will remain EU, but non-EU stations may be added (as done with wind profilers and some ceilometers)

Towards a GRAUN MWR GDP

Next steps towards a GRUAN MWR GDP:

- 2023/12 ACTRIS MWR data products for EU sites
 - Cannot say these are "GRUAN" products, but maybe GRAUN can accept them as v0.1
 - Data life cycle is secured
- 2024 Investigate any gaps wrt GRUAN requirements and consider any evolution
 - Data life cycle needs to be worked out
 - But may be easier starting from ACTRIS data products
- Looks good, but yet to come!

Thanks much for your attention!