Calibration of radiosonde humidity sensors using upper air simulator and applications to soundings

Dec. 1st, 2022

⇒GRUAN ICM-14

Sang-Wook Lee

Division of Physical Metrology,

Korea Research Institute of Standards and Science (KRISS)

*E-mail: sangwook@kriss.re.kr

Calibration facilities for radiosonde humidity sensors

- ☐ Humidity measurement conditions in upper air
 - ◆ Temperature (< -80 °C)
 - ◆ Pressure (< 10 hPa)
 - ◆ Frost-point temperature (< -90 °C)
- ☐ Quality control of humidity measurements
 - SI-traceable calibration of humidity sensors using ground facilities
 - ◆ Low-pressure low-temperature humidity generators
- ☐ KRISS calibration setup
 - Humidity sensors meets
 - Temperature: (-70 − 30) °C
 - Pressure: (50 1000) hPa
 - Dew/frost point temperature: (-90 20) °Cdp/fp
 - Relative humidity: (2-100) %rh

Lee et al. Metrologia 56, 025009 (2019)

Effect of low-temperature and low-pressure

- \square Low T effect \rightarrow water adsorption capacity \uparrow but absolute humidity \downarrow
- \square Low P effect \rightarrow Sensor responds to partial vapour pressure only

Upper air simulator (UAS) at KRISS

- □ Radiation correction of temperature sensors
 - ◆ Control of temperature, pressure, ventilation, and irradiance (using dry air)
- ☐ Calibration of humidity sensors

Control of temperature and humidity (1000 hPa & low ventilation speed)

Lee et al. Meteorol. Appl. 27, e1855 (2020)

<Upper air simulator>

Humidity calibration setup> Lee et al. Meteorol. Appl. 28, e2010 (2021)

Heatsink

PRT 1 & 2

Radiosonde (RS41)

Heat Exchanger

Operation of UAS humidity setup

Operation of humidity generator

RH =
$$\frac{e_{\text{ws}}(T_{\text{s}})}{e_{\text{ws}}(T_{\text{t}})} \times \frac{f(T_{\text{s}}, P_{\text{s}})}{f(T_{\text{t}}, P_{\text{t}})} \times \frac{P_{\text{t}}}{P_{\text{s}}} \times 100 \text{ (%rh)}$$

 $T_{\rm s}$ = saturator temperature, $P_{\rm s}$ = saturator pressure

 $T_{\rm t}$ = test chamber temperature, $P_{\rm t}$ = test chamber pressure

 $e_{is}(T_s)$ = saturation vapour pressure over ice in saturator

 $e_{\rm ws}(T_{\rm t})$ = saturation vapour pressure over water in test chamber

 $f(T_s, P_s)$ = enhancement factor in saturator

 $f(T_t, P_t)$ = enhancement factor in test chamber

UAS (input humidity)

Radiosonde

CM hygrometer (output humidity)

Uncertainty of UAS humidity generator

Table 2. Uncertainty budget on relative humidity of UAS at $T_t = -67.8$ °C.

RH = $\frac{e_{\text{ws}}(T_{\text{s}})}{e_{\text{ws}}(T_{\text{t}})} \times \frac{f(T_{\text{s}}, P_{\text{s}})}{f(T_{\text{t}}, P_{\text{t}})} \times \frac{P_{\text{t}}}{P_{\text{s}}} \times 100 \text{ (\%rh)}$	Relative humidity at $T_t = -67.8 ^{\circ}\text{C}$	%rh	9.5	19.0	28.3	37.4	9.5	19.0	28.3	37.4	9.5	19.0	28.3	37.4
ews(It) / (It, It) Is	Uncertainty component	Unit	Standard uncertainty				Sensitivity coefficient				Contribution to uncertainty			
u(T _s) x {∂e _s (T)/∂T} _{Ts} x [] x 100	Saturator temperature, $u(T_s)$	°C	0.027	0.027	0.027	0.027	1.549	2.958	4.289	5.565	0.042	0.080	0.116	0.150
u(P _s) x {-1/P _s ² } x [] x 100	Saturator pressure, $u(P_s)$	kPa	0.177	0.177	0.177	0.177	0.093	0.185	0.275	0.363	0.016	0.033	0.049	0.064
u _r (e _s (T _s)) x [] x 100	Saturation vapour pressure in saturator, $u_r(e_{is}(T_s))$	Pa	0.00014	0.00025	0.00036	0.00046	139.823	139.527	139.689	139.116	0.019	0.036	0.050	0.064
$u_r(f(P_s,T_s)) \times [\] \times 100$	Enhancement factor in saturator, $u_r(f(P_s, T_s))$		0.00049	0.00046	0.00044	0.00043	9.474	18.911	28.130	37.185	0.005	0.009	0.012	0.016
$u(T_t) \times (-1/e_s^2(T_t)) \times \{\partial e_s(T)/\partial T\} T_t \times [\] \times 100$	Test chamber temperature, $u(T_t)$	K	0.063	0.063	0.063	0.063	-1.301	-2.596	-3.861	-5.102	-0.082	-0.164	-0.243	-0.321
u(P _t) x[] x 100	Test chamber pressure, $u(P_t)$	kPa	0.182	0.182	0.182	0.182	0.095	0.189	0.281	0.371	0.017	0.034	0.051	0.068
$u_r(e_s(T_t)) \times (-1/e_s^2(T_t)) \times [] \times 100$	Saturation vapour pressure in test chamber, $u_r(e_{ws}(T_t))$	Pa	0.002	0.002	0.002	0.002	13.623	27.138	40.411	53.200	0.032	0.063	0.094	0.124
$u_r(f(T_t, P_t)) \times (-1/f(T_t, P_t)^2) \times [\] \times 100$	Enhancement factor in test chamber, $u_r(f(T_t, P_t))$		0.00081	0.00081	0.00081	0.00081	-9.485	-18.928	-27.975	-37.207	-0.008	-0.015	-0.023	-0.030
u (Efficiency)	Saturator efficiency, u (Efficiency)	°C	0.006	0.006	0.006	0.006	1.547	2.955	4.285	5.562	0.010	0.019	0.027	0.036
u(Adsorption/Desorption)	Adsorption/desorptio n, u(Ads./Des.)	°C	0.100	0.100	0.060	0.060	1.547	2.955	4.285	5.562	0.155	0.296	0.257	0.334
	Combined standard uncertainty, $u_c(RH)$ $(k=1)$	%rh									0.2	0.4	0.4	0.5
	Expanded uncertainty, u(RH) (k=2)	%rh									0.4	0.7	0.8	1.0

%rh

Reference temperature for RH of RS41

However, the ventilation speed in the test cell was 0.02 m/s (max. 0.6 m/s possible)

Reference temperature for RH of RS41

Calibration of RS41 humidity sensor using UAS

 \square RS41 T-sensor \rightarrow Reference T \rightarrow Reference RH of UAS

Calibration result; repeatability & reproducibility

Repeatability and Reproducibility of RS41

Calibration of DTR humidity sensors using UAS

- ☐ Dual thermistor radiosonde (DTR)
 - ◆ Black and white sensors for compensation of solar radiation effect.
 - Polymeric thin-film humidity sensors (capacitive sensors)

Radiation correction of DTR: Lee et al. Atm. Meas. Tech. 15, 2531-2545 (2022)

Calibration using the UAS

Residuals of calibration curves

Preparation for sounding

- □ Calibration of all humidity sensors at 20 °C
 - Climate chamber for controlling T and RH
 - Dew-point hygrometer is used to calculate reference RH

Radiosondes in climate chamber

Measurement setup

Sounding test; nighttime

Sounding test; nighttime

Sounding test; daytime

Compensation of dry bias

Air flow (5 m/s)

Temperature measurement on the inner side of cap using UAS

ation (1000 W/m²)

Temperature

Compensation of dry bias will be further studied.

Response time issue

- ☐ Adsorption/desorption of water is slow at low temperatures
 - ◆ Temperature of test cell = -70 °C
 - ◆ Pressure of test cell = 1000 hPa
 - Frost-point temperature = -80 °C
 - \bullet Air flow rate = 0.02 m/s

Air flow rate will be increased for testing response time

Summary

☐ Calibration of radiosonde humidity sensors using the UAS

- Uncertainty of relative humidity generation of the UAS is 1 %rh at -70 °C.
- Calibration of RS41 humidity sensors was conducted using the UAS (Sensor heating & low flow rate → Ref. T → RS41 T-sensor).
- Compensation of low-T effect of DTR having non-heating type humidity sensors was conducted using the UAS.

□ Sounding test

- Humidity measurements of RS41 and DTR are compared through soundings.
- ◆ At nighttime, RS41 and DTR agree within 5 %rh on average.
- \bullet At daytime, DTR shows a significant dry bias \rightarrow Compensation under study.
- ◆ DTR shows a slow response time in stratosphere → The setup will be revised to study response time.

Thank you for your attention

(sangwook@kriss.re.kr)