

Concept of a campaign of atmospheric characterization at ESO sites in Northern Chile

Florian Kerber (fkerber@eso.org),

A. Otarola, A. Smette, M. Cirasulo, S. Mieske

Dec 1st, 2022

European Southern Observatory

- Intergovernmental organisation established in 1962
 - Access to Southern skies and the Galactic Centre
- Vision
 - > ESO's vision is to deliver the Extremely Large Telescope (ELT), while keeping the Very Large Telescope (VLT), VLT Interferometer, and the Atacama Large Millimeter/submillimeter Array (ALMA) at the forefront of worldwide astronomy.

European Southern Observatory

- Intergovernmental organisation established in 1962
 - Access to Southern skies and the Galactic Centre

Vision

➤ ESO's vision is to deliver the Extremely Large Telescope (ELT), while keeping the Very Large Telescope (VLT), VLT Interferometer, and the Atacama Large Millimeter/submillimeter Array (ALMA) at the forefront of worldwide astronomy.

Values

- > ESO strives for **excellence** through **innovation**.
- ESO provides outstanding services to its communities.
- ESO fosters diversity & inclusion.
- ESO believes in the key role of sustainability for its future.

European Southern Observatory

Mission

- Enabling major scientific discoveries by constructing and operating powerful ground-based observational facilities that are beyond the capabilities of individual member states
- 2. Fostering international cooperation in astronomy
- The Extremely Large Telescope ELT (elt.eso.org)
 - > Primary mirror: 39 m diameter, 798 segments, shape: few 10s of nm
 - Enclosure: 88 m diameter, 80 m tall, rotating mass 6100 t
 - Site: Cerro Armazones: 3046 m asl, 23 km from VLT
 - Diffraction limited imaging: adaptive optics and laser guide stars
 - ➤ Science: design reference mission solar system, extra-solar planets, resolved stellar population and galaxy evolution, first stars, black holes, expansion of the universe, cosmology and dark matter
 - Construction budget: €1.3 billion, technical 1st light 2027

E

itory

Miss

1.

operating yond the

ESO sites in Chile

ESO sites in Chile – why we're there

- VLT on Co Paranal
- Cloud cover: 85% of the nights are clear
- Median PWV: 2.4 mm
- Median seeing: 0.66 arcsec (FWHM); very stable atmosphere
- Wind speed: median 6.6 ms⁻¹ (10 m)
- Remote, pristine site,2635 m asl

ESO – science operations

Visitor mode:

> astronomers come to site & conduct their observations

Service Mode:

- astronomers prepare observations at home (not unlike for satellite observatories)
- user-specific constraints for observing conditions: lunar phase, Seeing (image quality), water vapour
- ➤ ESO staff executes observations using real-time information on atmospheric conditions and forecasts
- ➤ If conditions change for the worse, we will repeat the observations

Cerenkov Telescope Array CTA

- Cosmic radiation 20 GeV 300 TeV
- Air showers (several 10 km) atmosphere is detector
- 2 arrays: North (La Palma), South (Paranal)
 - N: 4 large (45 m), 9 medium size telescopes: 0.25 km²
 - S: 14 medium, 37 small-size (8 m) telescopes: 3 km²
 - Start operations 2025/26, cta-observatory.org
- Ultrafast response: telescopes and detectors
 - Up to 4 ns sampling, 300 600 nm,
- Needs in terms of atmospheric information
 - Profiles of temperature, humidity, pressure, molecular composition (radiosondes, MVR)
 - Cloud detection (all-sky cameras), aerosols (Raman LIDAR)
 - Ground-based weather stations

Cerenk

- Cosmic radiat
- Air showers (
- 2 arrays: Nort
 - > N: 4 large (4
 - > S: 14 mediui
- Ultrafast resp
 - ➤ Up to 4 ns sa
- Needs in term
 - Profiles of te composition
 - Cloud detect
 - ➢ Ground-base

Use of our measurements

- Real-time use scheduling next hour
 - Match atmospheric status with needs of astronomical observations – user-specified constraints
 - > Select what to observe, switch instrument if needed
- Medium time Scheduling next 72 h planned
- Post-processing molecfit
 - Correction of telluric features in astronomical spectra
 - https://www.eso.org/sci/software/pipelines/skytools/molecfit
- Better understanding atmospheric properties relevant for astronomy >> ELT, CTA
 - > Angel Otarola, Atmosphere Scientist at ESO

Use of our measurements

Molecfit - temperature and humidity profiles LHATPRO

Use of our measurements

- Real-time use scheduling next hour
 - Match atmospheric status with needs of astronomical observations – user-specified constraints
 - > Select what to observe, switch instrument if needed
- Medium time Scheduling next 72 h planned
- Post-processing molecfit
 - Correction of telluric features in astronomical spectra
 - https://www.eso.org/sci/software/pipelines/skytools/molecfit
- Better understanding atmospheric properties relevant for astronomy >> ELT, CTA
 - > Angel Otarola, Atmosphere Scientist at ESO

Campaign 2024 - requirements

- Produce comprehensive data set for characterising properties of the atmosphere relevant for astronomical observations and forecasting
 - Seeing (integral of atmospheric turbulence Kolmogorov), coherence time, isoplanatic angle
 - ➤ Turbulence surface layer c_n², outer scale
 - ➤ Humidity, temperature, pressure, wind speed, direction, surface and up to 30/40 m, altitude-resolved profiles
 - > Transparency, aerosol content, cloud detection, all-sky maps
 - > PWV, IR sky brightness, air glow
- by
 - Combining in-situ measurements (RS and UAV) and remote sensing
 - Bring communities together: astro, fore/nowcasting, modelling

Campaign 2024 - requirements

- Produce GRUAN data products for reference and comparison
 - Fully understand requirements, framework >> way forward
 - GRUAN data products for MW radiometers in progress
- Data analysis combining in-situ (radiosondes/UAV) and remote sensing
 - > How to do this best ? cf WMO UAII2022
- High fidelity local short-term forecast
 - Real-time and post facto
- Produce comprehensive data set that is also relevant for meteorological (modelling & forecasting) and climate communities – hyper-arid site in Northern Chile

ESO – Paranal & Armazones

Campaign 2024 – concept basics

- Sample ~20 km wide slab of atmosphere between our sites
 - Radiosondes launched from CTA site ca 2100 m,
 - > fixed sensors at Paranal 2635 m & Armazones 3046 m,
 - additional sensors on drones (tbc)
 - Ceiling 12 km or higher
- 10-day radiosonde campaign(s) (cover seasons)
 - Ca 20 day & night launches one or two campaign 6 months apart
 - Option: twin launches for reproducibility, CFH for reference
- Ground-based and remote sensing airport model
 - Automated Weather stations 4 sites, Microwave radiometers, LIDAR
 - Different lines of sight 3D view tomography
 - ➤ GNSS (tbd)

ESO campaign – possible layout

Meteo-Station

Radiometer

LIDAR

Radiosonde

GRUAN ICM-14, E50 1.12.2022

Tools and capabilities

- AWS: Temperature, pressure, relative humidity, wind
- All-sky cameras: transparency, clouds, air glow
- MWR: profiles (10 km), Temp, RH, PWV,
- LIDAR: aerosols, water vapour,
- MASS-DIMM: turbulence C_n^2 profiles,
- High fidelity local forecast
 - non-hydrostatic numerical model, 24 h at 10-min resolution for 3 days,
 - turbulence seeing, ground layer fraction and coherence time
 - Meteorological parameters (T, P, RH, Wind Speed & direction)
 - Sky cloud coverage (at 1-hour time resolution)
 - From day 4th, and up to 10 days: simpler 1-hour time resolution forecast of atmospheric parameters (T, P, RH, WS, WD and Cloud Coverage).
 - Nowcasting (machine learning): 1 h for seeing, PWV

Campaign 2024 – invitation

- Create value for the communities join us
 - We solicit input to developing details of campaign
 - Invitation to interested partners to participate
 - > Provide additional sensors/equipment, also experimental ones
 - Coordinate radiosonde launches with satellite overpass?
 - Local GNSS network? Historical data in preparation?
 - New CFH without RS23 ? Ceiling: helium vs hydrogen ?
 - Exploit data set for models and now- & forecasting
 - Produce GRUAN data products
 - Antofagasta radiosonde archive
 - ESO to provide logistics on-site and support with customs
 - Trained technicians, power, internet, technical facilities, accommodation
 - Outcome will be incorporated in planning for science operations of the ELT and CTA

Summary and next steps

- Reaching out to community
 - CTA and NIST as partners
- Visit in Lindenberg (DWD) and Payerne (MeteoSwiss)
- Invitation Letter of Interest Q2 2023
- Detailed planning through Q3 2023
- ESO internal decision end 2023
- Preparation of logistics etc
- Campaign 2024/25