

Progress with response time measurements of radiosonde humidity sensors

Christoph von Rohden Tatjana Naebert, Rico Tietz

14th GRUAN Implementation and Coordination Meeting (ICM-14) 28 Nov - 02 Dec 2022

C. von Rohden – ICM-14

- Motivation
- Experimental approach
- Setup improvements
- New measurements RS92/RS41 (2021/22)
 - Closer look to response behavior
- Outlook/Conclusions

Motivation/Approach

- Slow response time τ of humidity sensors causes smoothing and time lag of measured RH profile at low T
- *T*-dependence of diffusion of water vapor in pore space of sensor material and rate of adsorption/desorption processes

- Approach:
 - Measure response at various T in laboratory setup:
 - Expose sensor to step-like changes of rel. humidity U
 - Evaluate response times τ (63.2%-times) assuming the sensor follows theoretical step response: $U(t) = U_{\infty} - \Delta U \cdot \exp\left(-\frac{(t-t_0)}{\tau}\right)$
 - Parameterise response time τ with T
 - Apply RH correction ('invert' the sensors filter effect) using $\tau(T)$ parameterisation

- Sensor response can be fully described using single parameter τ (sensor follows theoretical step response function)
- Use of **RH raw data** (pure sensor signal, no corrections applied)
- RS sampling rate in general 1 s \rightarrow lower limit for measurement of τ
- τ measured at surface pressure, but representative over atmospheric p-range
- τ is calibration invariant (*relative* RH changes at constant T)
- au should **not vary with RH step size**

Key setup specifications:

- *T*-range: –75 °C ... +20 °C, atmospheric pressure
- Air exchange time in test cells ≈ 0.5 s (lower limit for τ)
- Two chambers: simultaneous tests of two RS

Recent improvements (2021/22):

• Pre-defined *T*-levels

C. von Rohden - ICM-14

- High *T*-stability during RH steps (<0.4 K)
- Enhanced efficiency of humidifier (large RH step size)
- Creation/evaluation of both directions of RH steps

Improved setup (2021/22)

Deutscher Wetterdienst Wetter und Klima aus einer Hand

• Preparation time (installation of the RS and reference T-sensors in the test cells): ~1 h

Measurements

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

9

- Sequence of **2 to 4 RH steps** at each *T*-level (Repeatability)
- Simultaneous measurements in two identical test chambers; • Repitition of measurement series with further copies of the sonde model (Reproducibility)
- Determination of τ by **fitting** theor. step **response curve** to sections of the data records; both directions (next slides)
- Fitting applied several times at each step, including data sections of varying lengths \rightarrow assess τ -uncertainty (mean τ + SD) (next slides)

Determination of τ

ead Centre

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Evaluation of response times au

C. von Rohden – ICM-14

Lindenberg Meteorological Observatory Richard-Aßmann-Observatory

F 11

Results (RS92)

C. von Rohden – ICM-14

ead Centre

Lindenberg Meteorological Observatory Richard-Aßmann-Observatory

13

10²

10¹

 10^{0}

ead Centre

/ s

 τ_{63}

Response time,

DWD

C. von Rohden – ICM-14

Air temperature, T_{ref} / °C

ead Centre

ead Centre

C. von Rohden – ICM-14

ead Centre

Results (RS92, RS41), up/down steps

Deutscher Wetterdienst Wetter und Klima aus einer Hand

C. von Rohden – ICM-14

ead Centre

18

Data analysis, closer look

Deutscher Wetterdienst Wetter und Klima aus einer Hand

C. von Rohden – ICM-14

ead Centre

Data analysis, closer look

Evaluation of response times:

Assume that sensor response can be described as superposition of a 'short-term' (τ_s) and 'long-term' (τ_l) response, scaled with complementing factors a and 1 - a

Data analysis, closer look

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Richard-Aßmann-Observatory

C. von Rohden - ICM-14

Data analysis, closer look (RS92)

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Evaluation of response times: $U(t) = U_{\infty} - \Delta U \left[\mathbf{a} \cdot \exp\left(-\frac{(t-t_0)}{\tau_s}\right) + (1-\mathbf{a}) \cdot \exp\left(-\frac{(t-t_0)}{\tau_l}\right) \right]$ • ' τ_l - τ_s ' model fits the sensor response better а than single τ 10^{3} $\tau_{\rm short}$ τ_{long} Works over entire response time range • Ratio $(\tau_l/\tau_s \gtrsim 3)$ and 10^{2} 1.0 /s parameter *a* weakly Response time, τ_{63} *T*-dependent = share of • \rightarrow Interpretation? \rightarrow 'Slow regime' 10^{1} correction for M10 (Dupont, 2020) 10^{0} 0.0 20 -80 -60 -40 -20 0 Air temperature, T_{ref} / °C

C. von Rohden – ICM-14

ead Centre

Data analysis, closer look (RS92)

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Evaluation of response times: $U(t) = U_{\infty} - \Delta U \left[\mathbf{a} \cdot \exp\left(-\frac{(t-t_0)}{\tau_s}\right) + (1-\mathbf{a}) \cdot \exp\left(-\frac{(t-t_0)}{\tau_l}\right) \right]$ • ' τ_l - τ_s ' model fits the sensor response better а than single τ 10^{3} $\tau_{\rm short}$ up au_{short} dn Works over entire τ_{long} up response time range τ_{long} dn • Ratio $(\tau_l/\tau_s \gtrsim 3)$ and 10² 1.0 /s parameter *a* weakly Response time, τ_{63} *T*-dependent 0.5 (=share of 1 • \rightarrow Interpretation? \rightarrow 'Slow regime' 10^{1} correction for M10 (Dupont, 2020) ∇ • Separation up/down: ∇ 10^{0} 0.0 τ_l syst. larger for 'up' ∇ ∇ steps 20 -80 -60 -40 -20 0 Air temperature, T_{ref} / °C

ead Centre

Data analysis, closer look (RS41)

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Evaluation of response times: $U(t) = U_{\infty} - \Delta U \left[\mathbf{a} \cdot \exp\left(-\frac{(t-t_0)}{\tau_s}\right) + (1-\mathbf{a}) \cdot \exp\left(-\frac{(t-t_0)}{\tau_l}\right) \right]$ • ' τ_l - τ_s ' model fits the

- sensor response better than single τ
- Works over entire response time range
- Ratio $(\tau_l/\tau_s \gtrsim 3)$ and parameter *a* weakly *T*-dependent
- \rightarrow Interpretation? \rightarrow 'Slow regime' correction for M10 (Dupont, 2020)
- Separation up/down: τ_l syst. larger for 'up' steps
- RS41: more scatter (cont. sensor heating ?) ead Centre

• Parameterisation τ with T for use in GDP time-lag correction: find an appropriate model

E.g.: Arrhenius-like fit: $\tau(T) = \tau_0 \cdot \exp\left(-\frac{E_a}{RT}\right)$ (accounts for curvature in semi-log representation)

- Evaluation ongoing with respect to:
 - Deviation in τ for up/down steps (to be taken into account in correction?)
 - Uncertainty estimates
- ' τ_l - τ_s ' response model:
 - Interpretation?
 - Significance for time lag correction?
- Experiments at various air flow rates

- 2021/22: substantial technical improvements, Setup ready for routine experiments
- New measurements with RS41/92; Implementation of updated time-lag corrections based on 2021/22 measurements for RS41 and RS92 in follow-up GDP versions (RS41-GDP.2 and RS92-GDP.3)
- Setup extensively used in laboratory part of WMO inter-comparison campaign (UAII-2022): Standardised time-lag tests of 10 radiosonde models; evaluation ongoing

