Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

ICM-14. Ile de la Réunion

Confederaziun svizra Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

CHARACTERIZATION OF RALMO TEMPERATURE AND HUMIDITY DATA AND ERROR. A GLIMPSE TOWARDS OPERATIONAL ASSIMILATION

G. Martucci¹, B. Crezee¹, D. Leuenberger¹, A. Haefele^{1,2}

¹ Office Fédérale de Météorologie et Climatologie, MeteoSuisse, Payerne, Suisse
 ² Department of Physics and Astronomy, The University of Western Ontario, London, Canada

Instrument overview

- Fully automated
- Operated in Payerne since 2008
- Day and nighttime operation

- Analog and digital channels
- Holographic grating filter
- 450 mJ laser-pulse energy
- The laser output at 355 nm is aligned onto the beam expander:

- The elastic and Raman light collected by 4 mirrors and focused onto optic fibers.
- The H2O+N2 signals are separated from the PRR+O2+elastic signals by a razor-edge filter.
- The two groups of signals are transmitted through fibers to two polychromators (both based on reflective holographic diffraction grating)
- The output signals from the two polychromators are transmitted to dedicated PMTs and then to the acquisition cards (FastCom for PRR and Licel for the others)

What's needed for a lidar GDP?

A first step taken towards lidar GDP. For temperature and humidity retrieved from lidar the following procedure is applied operationally:

- Instrument comprehensive characterization
- Random and systematic error budget calculation
- Corrections (systematic)
 - Solar and electronic background
 - Dead time (non-paralyzable condition)
- Flagging of «uncertain» data:
 - Misalignment
 - Our Our Our Out of Contract of Contract

MIXING RATIO

Mixing ratio of a gas with respect to a reference gas. $P_R(z)$ is the water vapor signal at 407.49 nm, $P_{Ref}(z)$ is the Nitrogen signal at 386.69 nm, C is the lidar calibration factor and α_{Ref} and α_R are the Raman extinction from N2 and H2O molecules.

$$m(z) = C \frac{P_{\rm R}(z)}{P_{\rm Ref}(z)} \frac{\exp[-\int_0^z \alpha_{\rm Ref}(\zeta) d\zeta]}{\exp[-\int_0^z \alpha_{\rm R}(\zeta) d\zeta]},$$

The random error is calculated developing into Taylor's series the equation of m(z) with (assumed independent) errors on $P_R(z)$, $P_{Ref}(z)$ and C is performed. The error units are the same as for the mixing ratio, i.e. g/kg.

$$\sigma_{rand_mr} = C \left(\frac{\sigma_{H20}^2}{P_{N2}^2} + \frac{P_{H20}^2 \sigma_{N2}^2}{P_{N2}^4} + \sigma_C^2 \frac{P_{H20}^2}{C^2 P_{N2}^2} \right)^{1/2} \cdot \Delta \alpha^m$$

 $\Delta \alpha^{m}$ is the differential extinction contribution accounting for 10%

 σ_{H2O}^2 and σ_{N2}^2 are the combination of two error contributions: the signal variance at time *i* (0-lag) and the atmospheric covariance of P_{N2} and P_{H2O} signals over a time-lag of 10 minutes (*i*-5 to *i*+5) at every altitude. The atmospheric component is subtracted from the 0-lag variance.

$$\sigma_X = var(X_{0-lag}) - cov(X_{0-lag})$$

G. Martucci et al, ICM-14

Calibration of WV using RS41, 28-Jul-2022, 23h00-23h30

Water vapor mixing ratio: daytime validation during 01.08.2021-31.08.2022

÷

÷

4) 4)

_റ്

Water vapor mixing ratio: nighttime validation during 01.08.2021-31.08.2022

ф ф

`8ي

\$~~\$

TEMPERATURE

$$T_{\rm ral} \approx \frac{A}{B + \ln Q}$$
. $Q(z) = J_{\rm low}(z) / J_{\rm high}(z)$

Taylor's linear propagation with respect to the A, B coefficient and their related errors.

Taylor's linear propagation of T equation w.r.t. the errors of J_{high} , J_{low} without the atmospheric contribution (covariance of σ_{JH} and σ_{JL})

$$U_{\text{fit}} = \frac{1}{(B+\ln Q)} \left[\sigma_A^2 + \frac{A^2 \sigma_B^2}{(B+\ln Q)^2} \right]^{\frac{1}{2}}.$$

$$U_{\text{sig}} = \frac{A}{(B+\ln Q)^2} \left[\frac{(\sigma_{\text{JH}})^2}{J_{\text{high}}} + \frac{(\sigma_{\text{JL}})^2}{J_{\text{low}}} \right]^{\frac{1}{2}}.$$

$$Random \text{ error: } \sigma_{rand} T = \sqrt{U_{\text{fit}}^2 + U_{\text{sig}}^2}$$

$$G. Martucci et al. ICM-14 = 9$$

Calibration of T using RS41, 17-Jan-2022, 23h00-23h30

Temperature: daytime validation during 01.08.2021-31.08.2022

Temperature: nighttime validation during 01.08.2021-31.08.2022

WV and Temperature: assimilation experiment

COSMO-1E

Data assimilation cycle and NWP system

KENDA/LETKF:

- 1.1km mesh size
- 40 members + deterministic
- hourly cycling
- observations: soundings, aircrafts (AIREP/MODE-S), surface stations, wind radars, weather radars (LHN)

COSMO-1E/2E:

- 1.1km/2.2km mesh size
- 10 members/20 members + control
- . 33 hours/5 days forecast, 8x/4x per day

Profile verification of the model firstguess against 60 radio soundings in Payerne shows reduction of dry bias in model (left) and reduction in STD (right) for RH [0-1].

Spatial verification of precip. forecasts against a radar-derived dataset shows **improvement** in fraction skill score for leadtimes 3-8 hours for **1h precipitation sums**.

G. Martucci et al. ICM-1

Summary

- The data processing retrieves temperature and humidity profiles and calculates the associated observation error every 30 minutes.
- The calculated observation error represents main sources of error. T, WVMR and σ are validated by comparison with the co-located RS41 radiosounding over 13 months.
- The calculated observation error is in good agreement with the std($X_{RAL}-X_{RS41}$)
- The X_{RS41} and X_{RAL} agree within the errors.
- The validated X_{RAL} are assimilated into the 1.1-km mesh size KENDA-1 model. The impact is
 positive and MeteoSwiss moves towards the operational assimilation of X_{RAL} by the end of
 2022.

* • We observe a larger value of std(T_{RAL} - T_{RS41}) with respect to Martucci et al. 2021