Interpolation Uncertainty for RS/41 (review) and GNSS-RO (preliminary results)

Alessandro Fassò

UNIVERSITÀ DEGLI STUDI DI BERGAMO Dipartimento di Scienze Economiche

Interpolation uncertainty for RS41 missing data

Recently the interpolation uncertainty for missing data imputation has been considered for RS41 providing both a method an assessment for small to medium gaps.

Interpolation uncertainty for RS41 missing data

Pietro Colombo 0 and Alessandro Fassò

of radiosonde humidity profiles

Considerations and further developments

- ▶ Implementable in a future GDP version.
- ► Extendable to other (all) RS41 variables
- Updatable on the more recent and extended RS41 dataset
- Easily adaptable to RS92

GNSS-RO interpolation uncertainty

In collaboration with Kalev Rannat and Hannes Keernik

Underlying motivation:

The comparison of GNSS-RO and RS has been considered in a correction problem recently¹.

Here, I consider the more general problem of the collocation uncertainty budget.

- ► Difference in smoothing
- Spatial displacement
- Temporal delay
- ..

¹Tradoswky et al, 2017, https://www.jstor.org/stable/26179972

Data

This preliminary study considers T and RH from 215 GNSS-RO retrievals² collocated to Lindenberg in year 2016.

Each GNSS-RO profile has 60 pressure levels which are not constant over different profiles.

Another 215 high-resolution GRUAN RS41 profiles with raw data for T and RH are used as "truth" and filtered at the same 60+37 RO and ERA levels to mimic the GNSS-RO dataset from the interpolation point of view.

²Source: ROM SAF - Product Archive, https://www.romsaf.org

RO-ERA5 time distance

(Based on RS41 flying time)

Talk aim

Assessing the uncertainty due to interpolation of RO levels to ERA5 levels

Main points

- to consider T and RH
- to use high resolution GRUAN RS41 as "truth"
- to embed measurement uncertainty of RO in the interpolation algorithm
- to propagate it into the interpolated values

Interpolation with meausurement errors

$$y_i = x_i + \varepsilon_i$$

$$x_i = x_{i-1} + \alpha_i \times \Delta p_i + \eta_{1,i}$$

$$\alpha_i = \alpha_{i-1} + \eta_{2,t}$$

Where

- y_i is the measured T or RH at level i
- \triangleright ε_i is the (unobserved) measurement error
- $u_i = \sigma(\varepsilon_t)$ is the measurement uncertainty (known for GNSS-RO)
- \triangleright x_i is the unobserved true value
- $\triangleright \alpha_i$ is the unobserved true value
- \triangleright p_i is the pressure at level i.
- \triangleright $\eta_{1,i}$ and $\eta_{2,i}$ are two white noise innovations
- i = 1, ..., n = 60 + 37 is the pressure level index.

The Kalman smoother

The Kalman smoother provides the estimate for the ERA5 levels:

$$\hat{y}_i = E(x_i|y_1,...,y_n)$$

and the uncertainty at interpolated levels:

$$u(\hat{y}_i) = \sqrt{Var(x_i|y_1,...,y_n)}$$

Experiment plan

I consider two phases

- using GRUAN dataset to assess empirically the performance of interpolation
 - linear interpolation
 - pchip
 - makima
 - ► GP
 - Kalman smoother
- using the KS model to propagate the measurement uncertainty and assess its impact on interpolation uncertainty

GRUAN evidence

relative RH error

GNSS-RO

Further developments in GNSS-RO

To do:

- Phase 1:
 - to apply this approach to RS41 GDP data and their uncertainty
- ▶ Phase 2:
 - to analyse RH to compare KS and GP formula for uncertainty
- ▶ Phase 1 and 2:
 - to extend to other GRUAN stations
 - to extended to other ECVs
 - to consider pressure uncertainty

Thanks for your questions!