

Effects of inhomogeneities within the Field of View in satellite Water Vapour measurements

Xavier Calbet, AEMET (xcalbeta@aemet.es) C. Carbajal-Henken, B. Sun, T. Reale, S. DeSouza-Machado

30 November 2022 GRUAN ICM-14

1. Confirmation GRF model for WV < 6 km

- 2. Fine details of RTM
- 3. Permanent Bias
- 4. Conclusions

Summary

1. Confirmation GRF model for WV < 6 km

- 2. Fine details of RTM
- 3. Permanent Bias
- 4. Conclusions

Variability of Water Vapour

Two different scales

Variability of Water Vapour within FOV

Variability of Water Vapour within FOV

Structure Function of WV from Sondes, MSG and OLCI

Structure function confirmed!!

Gaussian Random Field seen from OLCI

GRF function confirmed!!

Confirmation GRF of WV < 6 km

- It is useful to have a model of the behaviour of WV at scales < 6 km for many applications:
 - Fusion of WV measurements from different instruments at different scales
 - Fine details of Radiative Transfer Modelling

Calbet et al. 2022, AMT

1. Confirmation GRF model for WV < 6 km $\,$

- 2. Fine details of RTM
- 3. Permanent Bias
- 4. Conclusions

RTM in an inhomogeneous FOV

• Finally, if we take the effects of all the vertical profile levels, we get the equation from the following slide

RTM in an inhomogeneous FOV

RTM calculation for an inhomogeneous FOV, where:

- < > means spatial average
- R are radiances
- w is humidity
- i, j are the vertical level indices

$$<\delta R>\approx \sum_{i=1}^{All\,Levs}\frac{dR}{dw_i}<\delta w_i>+\sum_{i=1}^{All\,Levs}\sum_{j=1}^{All\,Levs}\frac{1}{2}\frac{d^2R}{dw_idw_j}<\delta w_i\delta w_j>$$

Calbet et al. 2018, AMT

Test Case

- One well known case from the EPS/MetOp Campaign (from 2007 described in Calbet et al. 2011, AMT)
- Sequential Sondes with:
 - One CFH + RS92 sonde flown 1 hour before overpass time
 - One RS92 sonde flown 5 minutes before overpass time
- Allowing WV bias correction by comparing CFH versus RS92
- Estimation of the Best State of the Atmosphere (Tobin interpolation)
- In this presentation only IR will be shown. Similar results should be obtained for MW

RTTOV IASI Radiances from Best State Estimate

Test Case: Sonde profile

PARA LA TRANSICIÓN ECOLÓGICA

Agencia Estatal de Meteorolog

WV Variability Matrix

IASI Radiances with and without WV Inhomogeneities

IASI Radiances with and without WV Inhomogeneities

1. Confirmation GRF model for WV < 6 km

- 2. Fine details of RTM
- 3. Permanent Bias
- 4. Conclusions

Extra Slide: dR/dw versus d²R/dw²

In the WV band, dR/dw is almost linear with $d^2R/dw^2 \rightarrow$ Difficult to retrieve both WV profile and WV inhomogeneity

 $dB/dR \sim -0.5 d^2R/dw^2$ Turbulence can be mistaken with WV concentration!!

IASI separating inhmogeneity from WV content

- Retrievals without turbulence, <dw'>:
 <dR> = dR/dw <dw'>
- Retrievals with turbulence, <dw>:

• Equating both results:

 $< dw > \sim < dw' > + 0.25 * < dw^2 > \rightarrow < dw > greater than < dw' >$

WV concentration from Remote Sensing is perhaps underestimated!!

Consistent with Carbajal-Henken, 2020, Remote Sensing

1. Confirmation GRF model for WV < 6 km

- 2. Fine details of RTM
- 3. Permanent Bias
- 4. Conclusions

Conclusions

- Inhomogeneity is significant in RTM: Relatively stable profile has an 0.5K effect in radiances (IASI and MHS) → Other more turbulent profiles might have a higher effect (needs to be confirmed with a bigger sample)
- Value of GRUAN satellite collocated sequential sondes:
 - > Derive accurate Best State Estimates
 - > Derive WV variability matrix
 - > Allows fine detail comparison of RTM and Observations
- Permanent Bias:
 - Inhomogeneity effects can produce a "permanent" bias in some remote sensing WV measurements

