Early Evolution of the Hunga-Tonga Aerosol Stratospheric Plume from Lidar Observations at La Réunion (21°S, 55°E)

GRUAN IMC-14

Nov. 2022

A. Baron¹, P.Chazette², S.Khaykin³, G. Payen⁴, N. Marquestaut⁴, N. Bègue¹ and V. Duflot¹

IPSL

LSCE

Transport toward La Réunion

2022-01-19 00:00

0.5°E 6°E 11°E16°E21°E26°E31°E36°E41°E46°E51°E56°E61°E66°E71°E76°E81°E86°E

© Bernard Legras – EUMETSAT – MSG-IODC

Hunga – Tonga Intensive Campaign at Maïdo

Two main instruments for aerosols profiling

- Li1200 operating at <u>355 nm</u> (UV)
- LiO₃T operating at <u>532 nm</u> (Visible)

at Maïdo © CNRS

Up to 24 nights of measurements between 19 Jan. and the end of February (end of the intensive lidar measurements) \rightarrow 372 hours of lidar obs. cumulated with these two systems

Balloon-born in-situ measurements during the intensive campaign at Maïdo

More than 15 balloons launches involving **ECC** ozone measurements, POPS, COBALD aerosols measurements, SO2 sondes, LOAC sondes and CFH water vapor sondes

Methodology

Aerosol layer sandwiched between stratospheric clean layers => "Transmittance" or "Rayleigh slope" method (used for cirrus clouds optical depth)

OPAR Lidar observations – January 2022

OPAR Lidar observations – January 2022

19 January – Li1200

High Lidar Ratio₃₅₅ (129 sr) High uncertainty (\pm 74 sr) 30% CALIOP linear depol ratio

Inhomogeneous plume & aerosol mixture: fine ash, sulfates, sea salts ?

OPAR Lidar observations – January 2022

21 January – Li1200

OPAR Lidar observations – January 2022

21 January – Li1200

Supported by depolarization ratio ~0% (CALIOP)

21 January – Li1200

Mie Code

Baron et al., GRL, in review

Hypothesis:

- Spherical particles (OK for sulphates, NOK for ash)

- Monomodal lognormal size distribution (supported by previous in situ observations on stratospheric balloons)
- Aerosol mixture with the properties of sulfate particles (supported by mean LR_{532} =66 ± 7 sr)

Mie Code

Baron et al., GRL, in review

Hypothesis:

- Spherical particles (OK for sulphates, NOK for ash)

- Monomodal lognormal size distribution (supported by previous in situ observations on stratospheric balloons)
- Aerosol mixture with the properties of sulfate particles (supported by mean LR₅₃₂=66 \pm 7 sr)

Mie Code

Baron et al., GRL, in review

Hypothesis:

- Spherical particles (OK for sulphates, NOK for ash)

- Monomodal lognormal size distribution (supported by previous in situ observations on stratospheric balloons)
- Aerosol mixture with the properties of sulfate particles (supported by mean LR₅₃₂=66 \pm 7 sr)

- OPAR RS measurements
 - Unprecedented ground-based lidar observations of aerosol volcanic plume at these altitudes
 - Highly variable plume structure shaped by stratospheric dynamics
 - Heterogeneous optical properties and aerosol load between the different injection altitudes

- OPAR RS measurements
 - Unprecedented ground-based lidar observations of aerosol volcanic plume at these altitudes
 - Highly variable plume structure shaped by stratospheric dynamics
 - Heterogeneous optical properties and aerosol load between the different injection altitudes
 - Follow up of the plume as it circles the globe

- OPAR RS measurements
 - Unprecedented ground-based lidar observations of aerosol volcanic plume at these altitudes
 - Highly variable plume structure shaped by stratospheric dynamics
 - Heterogeneous optical properties and aerosol load between the different injection altitudes
 - Follow up of the plume as it circles the globe

Oct

Upcoming comparison with model outputs

OPAR RS measurements

stratospheric dynamics

Unprecedented ground-based lidar observations of

Heterogeneous optical properties and aerosol load

aerosol volcanic plume at these altitudes

Highly variable plume structure shaped by

Baron A.

- OPAR RS measurements
 - Unprecedented lidar observations of aerosol volcanic plume at these altitudes
 - Highly variable plume structure shaped by stratospheric dynamics
 - Heterogeneous optical properties and aerosol load between the different injection altitudes
 - Follow up of the plume as it circles the globe

- In situ & Lidar synergies
 - POPS x Lidar: aerosol extinction cross section → time height cross section of aerosol mass/surface concentration in the plume
 - POPS + CFH x Lidar: aerosol hygroscopic properties, aerosol ageing and associated optical properties

Thank you !

© René Carayol