Upper-air simulator to evaluate the radiation correction and measurement uncertainty of RS41

ICM-13 online

19th Nov. 2021

Sang-Wook Lee* & Yong-Gyoo Kim

Division of Physical Metrology

Korea Research Institute of Standards and Science (KRISS)

*Speaker : sangwook@kriss.re.kr

Significance of radiosonde measurement

- Accurate method to monitor the long-term climate change in stratosphere
 - Temperature is the direct index of global warming
- Practical tool to gather climate variables for the weather forecasting in troposphere
- Serve as a Reference to other remote skills such as satellite
- □ Sounding sites more than 1000 sites
 - National observatories
 - Military bases, etc
 - Institutes & universities for research

Radiosonde meets ...

High solar irradiance $\sim 1360 \; W/m^2$

Low pressure down to a few hPa

Upward air ventilation +5 m/s

Low temperature below -70 °C

Requiring accurate test method based on international agreement

Conditions for test method

- Guide to Meteorological Instruments and Methods of Observation (WMO-No.8)
 - Chapter 12, MEASUREMENT OF UPPER-AIR PRESSURE, TEMPERATURE AND HUMIDITY
 - "The calibration methods used by manufacturers should be identified before purchasing radiosondes."
 - Stability condition of ±0.2 hPa/min for pressure, ±0.25 K/min for temperature and ±1 relative humidity per minute
 - Errors less than ±0.2 hPa for pressure, ±0.1 K for temperature and ±1% relative humidity

There is no detailed descriptions on the implementation of calibration setups/methods

Upper air simulator (UAS) at KRISS

- □ Radiation correction of temperature sensors
 - Control of temperature, pressure, ventilation, and irradiance
- □ Calibration of humidity sensors

Lee et al. Meteorol. Appl. 27, e1855 (2020)

Control of temperature and humidity

<Upper air simulator>

Humidity calibration setup> Lee *et al.* Meteorol. Appl. 28, e2010 (2021)

Radiation correction setup

- □ Environmental factors affecting radiation correction
 - Temperature (T = -70-20 °C) by climate chamber
 - Air pressure (P = 5-500 hPa) & Ventilation (v = 4-7 m/s) by sonic nozzles
 - Irradiance ($S_0 = 1000 \text{ W/m}^2$) by solar simulator

Test section

Humidity sensor

Temperature

senso

Quartz

Window

Air flow

Rotation & Tilting of radiosonde

- □ Simulation of movement of radiosonde in sounding
 - Rotation (5, 10, 15 s) & Boom tilting (27 $^{\circ}$)

7

Pressure effect

Convective cooling

• Radiation correction ($\triangle T_{rad}$) decreases as air pressure (P) increases

• Air density \uparrow at high $P \rightarrow$ Convective cooling \uparrow

 $\Delta T_{\rm rad} = A_0(T) + B_0(T) \cdot \log(P) + C_0(T) \cdot [\log(P)]^2 \text{ for 5 hPa} \le P \le 500 \text{ hPa}, S_0 = 980 \text{ W} \cdot \text{m}^{-2}$

Theoretical understanding

Heat transfer calculation

Metal sphere is modelled as a temperature sensor

Temperature effect

Radiation from the sensor п

• $T \downarrow \rightarrow k$ (thermal conductivity) $\downarrow \rightarrow h \downarrow \rightarrow \triangle T_{rad}$

 Joule-Thomson coefficient 	 Surface tension (saturation curve only) 	
 Viscosity 	 Thermal conductivity 	
 Internal energy 	 Speed of Sound 	
Enthalpy	Entropy	
• Cp	• C _v	
Density	 Specific volume 	

Thermophysical Properties of Fluid Systems

ST Chemistry WebBook, SRD 69

1.1				Joule-Thomson coefficient Surface te	nsion (saturation curve only)
1.1	—▲— Theoretical (-70 °C)	Parameter	Symbol (Unit)	Value ($T_a = 20 \ ^\circ C$)	Value ($T_a = -70 \text{ °C}$)
1.0 - 7	—■— Theoretical (20 °C)	Diameter	<i>D</i> (m)	0.001	0.001
	$-\Box$ - Experimental (-67 °C)	Air pressure	P _a (hPa)	5	5
_ 0.9 -	– △– Experimental (20 °C)	Wind speed	v (ms ⁻¹)	5	5
		Viscosity	μ (Pa·s)	0.00001754	0.00001307
° 0.8 ``		Density	ho (kg·m ⁻³)	0.0057466	0.0082925
		Thermal conductivity	$k (W \cdot m^{-1} \cdot K^{-1})$	0.025367	0.018869
V 0.7		Heat capacity	$C_{p}(J \cdot kg^{-1} \cdot K^{-1})$	1039.6	1039.1
		Reynolds number	Re	1.64	3.17
0.6 -		Heat transfer coefficient	h (W·m ⁻² ·K ⁻¹)	63.97	51.67
0.5 -		Solar irradiance	$S(W \cdot m^{-2})$	1000	1000
		Absorptivity of metal	α	0.2	0.2
0 10 20	30 40 50	Radiation correction	<i>T</i> s - <i>T</i> a (K)	0.78	0.97
Air pres	ssure (hPa)	$\alpha S = h(T_{\rm s} - T_{\rm a}), \ h = \frac{k}{D} \left[2 + \left(0.4Re^{\frac{1}{2}} + 0.06Re^{\frac{2}{3}} \right) \left(\frac{\mu C_p}{k} \right)^{\frac{2}{5}} \right]$			

Estimation of low temperature effect

Empirical formula based on experiment

• Estimation of $\triangle T_{rad}$ at cold temperatures using $\triangle T_{rad}$ at 20 °C

Ventilation effect

SS Korea Research Institute of Standards and Science

Irradiance effect

13

dards and Science

Rotation of radiosonde

Simulating rotation motion of radiosonde in sounding

• Oscillation of $\triangle T_{rad}$

Oscillation of $\triangle T_{rad}$ can be averaged out by fittings or treated as **uncertainty**

Radiosonde tilting

Simulating solar elevation angle

• Calculation of $\triangle T_{rad}$ in proportion to effective irradiance

Effective irradiance to sensor

□ Solar angle α , Azimuthal angle φ , & Boom tilti angle θ

• Effective irradiance (mean over rotation angle, φ)

Radiation correction

□ UAS (KRISS) vs. Manufacturer (Vaisala)

 $\Delta T_{\rm rad_UAS} < \Delta T_{\rm rad_Vaisala} \text{ by } 0.5-0.7 \text{ °C at } -70 \text{ °C \& 5 hPa with } S = 1360 \text{ W} \cdot \text{m}^{-2} \text{ \& } \alpha = 45-90 \text{ °}$ $\Delta T_{\rm rad_UAS} < \Delta T_{\rm rad_Vaisala} \text{ by } 0.04-0.4 \text{ °C at } -70 \text{ °C \& 5 hPa with } S = 1360+400 \text{ W} \cdot \text{m}^{-2} \text{ \& } \alpha = 45-90 \text{ °}$

Uncertainty

\Box Uncertainty of radiation correction, $U(\triangle T_{rad})$

Uncertainty factor	Condition	Unit	Standard uncertainty $(k = 1)$	Contribution to uncertainty of radiation correction $(k = 2)$
Т	-67	°C	0.028	0.000 °C
Р	5	hPa	0.01	0.000 °C
V	5	m·s ⁻¹	0.058	0.004 °C
S	980	W·m⁻²	30.5	0.062 °C
Rotation	24	°·s ⁻¹	-	0.035 °C
Tilting	27	0	-	0.052 °C
Fitting error	-0.024 - 0.04	°C	0.023	0.046 °C
Expanded uncertainty of radiation correction ($k = 2$), $U(\Delta T_{rad})$			0.100 °C	

\Box Uncertainty of corrected temperature, $U(T_{cor})$

Scaled to 1360 W·m⁻²

 $U(T_{\rm cor})^2 = U(T_{\rm raw})^2 + U(\Delta T_{\rm rad})^2$

Uncertainty factor	Uncertainty	(k = 2)
Expanded uncertainty for the radiation correction at 1360 W·m ⁻² , $U(\Delta T_{rad})$	0.138°C	
Calibration of RS41 temperature sensor (Vaisala), $U(T_{raw})$	0.100 °C	
Expanded uncertainty in the corrected temperature, $U(T_{cor})$	0.170 °	°C

Radiation correction with irradiance measurement

Dual thermistor radiosonde (DTR)

Dual thermistor radiosonde will be presented by Dr. Yong-Gyoo Kim (KRISS)

Summary

Upper air simulator for radiation correction of radiosonde

- Temperature (-70-20 °C), Pressure (5-500 hPa), Ventilation (4-7 m/s), & Irradiance (1000 W/m²)
- ♦ Radiosonde rotation (5, 10, 15 s) & Boom tilting (0-27 °)
- Radiation correction as a function of *T*, *P*, *v*, *S* and solar angle
- $\triangle T_{\text{rad}_\text{UAS}} < \triangle T_{\text{rad}_\text{Vaisala}}$ by max. 0.04–0.4 °C with $\alpha = 45-90$ °
- Uncertainty of radiation correction, $U(\triangle T_{rad}) = 0.14$ °C
- Uncertainty of corrected temperature, $U(T_{cor}) = 0.17$ °C
- Uncertainty of soundings should be added to $U(T_{cor})$
- Any type of radiosonde can be tested using the UAS at KRISS

Thank you for your attention

More discussions to sangwook@kriss.re.kr

