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Background NPLE

* Providing suitable information on measurement uncertainties to end users is a
particular challenge in atmospheric measurements, particularly given the range
of timescales of interest.

« Tools for uncertainty assessment and reporting are being developed over a
series of collaborative projects and networks.

« This talk presents a Case Study on such an assessment carried out as part of
the recent Copernicus Climate Change Service activity on ‘Access to
observations from baseline and reference networks’ (C3S 311a_Lot3) led by
CNR-IMAA.
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What is uncertainty? NPLE

Definition in the International Vocabulary of Basic and General Terms in
Metrology (VIM) — Third edition (2006)
‘Parameter, associated with the result of a measurement,
that characterises the dispersion of the values that could
reasonably be attributed to the measurand’

From which we can conclude: x +U
* Uncertainty is a topic which seems to attract the (with a given confidence interval
most obscure and convoluted definitions; defined by a coverage factor, k)
« Uncertainty is a property of a result; |
 Indicates the likely range within which we think
the ‘true’ value of a measured quantity lies, 2
given all the information we have,; ag
« Measurement uncertainty is a single value, E
expressed in terms of the measurand, either as
a percentage or in units or the measurement. 0

measured value



Traceability and uncertainty NPL
assessment
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« Traceability and uncertainty assessments were carried out in European
H2020 GAIA-CLIM project for a range of atmospheric measurements.

« Linked to equivalent process for EO dataset developed in Fiduceo project.

« All steps in the process of generating the measurement product are
considered in terms of:

- The uncertainty related to that step.

- The temporal and spatial correlation of the uncertainty.
- The influence of the step on the final result.

- Any correlations with other steps in the process.

- The traceability and validation relevant to that step.

* Provides current best estimate of uncertainty contributions and their
correlations, and identify gaps in current knowledge of uncertainties.

« G-C work didn’t resolve how to report correlation in overall uncertainty.



Combined uncertainty — correlation
reporting options

* Report total uncertainty for results over different timescales
« Co-variance matrices

- Matrix representation of uncertainties with random (diagonal) and correlated
(off-diagonal) components.

. Already used for optimal estimation analysis in a number of techniques.

- EXperience for 1-D variation, usually spatial, but harder to implement for 2-D
variation — spatial & temporal.

* Uncertainty PDF’s and ensembles

- Use Monte Carlo sampling of individual uncertainty components to generate
ensemble of potential outcomes, and also giving combined probability density
function.

- Relatively easy to implement and deal with non-normal uncertainty distributions.
. Potential issues of data volume and applicability to users.



Uncertainties for different
‘results’

* Follow the VIM uncertainty reporting definition, but provide total
uncertainty values for different ‘results’, i.e. provide separate
uncertainties values for different averaging periods.

« Users could select most appropriate timescale for their application
and relatively easy to report/use.

 Loses some detall of the correlations, and this detall is still needed to
calculate for different periods.

« Case study completed for RS92 GDP temperature measurements.
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Uncertainty Breakdown Method

 Different uncertainty contributions were identified
and classified — Random, Systematic, Structured
Random, Quasi-systematic — according to how
the uncertainty was expected to change between
measurements.

« The method of the single-profile uncertainty
breakdown was developed using Dirksen et al
2014, and discussion with the lead centre team.

« Two different methods used for night-time and
daytime sondes, determined by SZA. For night-
time sondes many uncertainties are set to 0.

« For the uncertainties of means of
measurements, the uncertainty components of
the contributing measurements where averaged
then, if the contribution was determined to be
random, reduced according to the number of
measurements used to find the mean.
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Temperature Correction NPLE
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Uncertainty Reduction — Total Uncertainty

« Large amount of the variability in
total uncertainty is from the
statistical uncertainty, so it
reduces quickly.

 Further reduction going from the
altitude level mean to the weekly
and monthly means as many of
the uncertainty contributions
change from systematic within a
profile to random between
profiles.
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Uncertainty Reduction — ‘Random’ and
‘Systematic to Random’ uncertainties
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Uncertainty Reduction — ‘Systematic’
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Conclusions NPLE

« Traceability and uncertainty assessments provides a summary of all the
potential uncertainty contributions (and the gaps in this knowledge) for
different products.

« Reporting uncertainties on different timescale provides a simple way for
different users to identify relevant uncertainty for their application.

 The work on the RS92 GDP provides an estimation of the uncertainty for
different data products / reporting timescales.

* Provides a Case Study for uncertainty reporting which will be
Implemented through C3S (USCRN surface temperature uncertainties
also assessed)

« Potential for implementation across other GDPs.
« Paper in preparation (preliminary draft with co-authors).
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