

Online, 17/11/2020

Progress towards a GRUAN MWR product

Nico Cimini & Fabio Madonna CNR-IMAA, Italy

C National Research Council of Italy

Why a GRUAN MWR product?

Microwave Radiometer (MWR) provides:

- Low-resolution Temperature and Humidity profiles
- Total water vapor + liquid water column (TWVC, TLWC)
- Continuous measurements at
 - ~1 min temporal resolution
 - ~all weather

With respect to radiosondes

- Highly redundant (though much lower vertical resolution)
- Independent (e.g. RS80 dry bias)
- Complement diurnal cycle
- Complement TLWC (no other GRUAN instrument)

Online, 17/11/2020

Progress since ICM-11

- 1. Investigation of systematic uncertainty (absorption model)
- 2. Online calibration monitoring

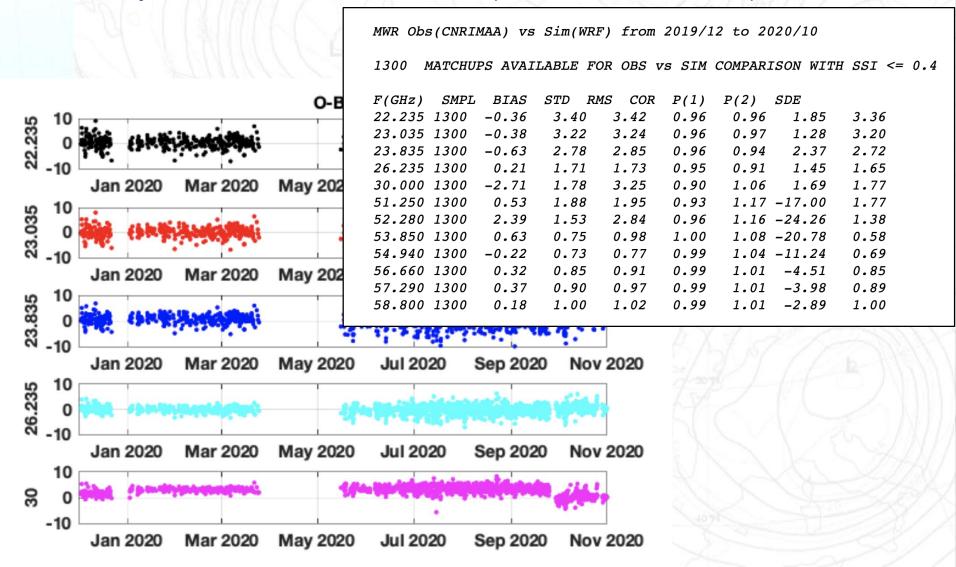
1) Investigation of systematic uncertainty

- Current MW absorption models are affected by systematic uncertainty
 - e.g. speed-dependence (SD) of line shapes is currently not considered
- Theory for SD line shapes has been developed and tested
 - Lines at 22 and 118 GHz (Rosenkranz & Cimini, TGRS 2020)
 - Line at 183 GHz (Koshelev et al., submitted to JQSRT, 2020)
- Non-negligible systematic errors are introduced if SD is neglected • ~1-2%

Online, 17/11/2020

2) Online MWR calibration monitoring

- Continuous Observation minus model Background (O-B) stats
 - Check for clear-sky conditions
 - Simulate observations with RTTOV-gb from NWP output
 - Calculate daily differences, monthly means and variances
- AROME
 - Developed at Meteo France, hosted by U. Cologne (P. Martinet, U. Löhnert)
 - 4 sites, including GRUAN sites Lindenberg, Paris, Payerne
- WRF/ECMWF
 - Developed and hosted at CNR-IMAA (N. Cimini, S. Gentile, F. Madonna)
 - 3 sites, including GRUAN site in Potenza


• Demonstrated successful in monitoring calibration jumps

Online, 17/11/2020

2) Online MWR calibration monitoring

~1 year of MWR O-B in Potenza (Dec 2019 – Oct 2020)

Online, 17/11/2020

Prospectives

• Task Team on Ground-Based Remote Sensing Measurements (TT-GB)

- New members, highly MWR-qualified
 - Maria Cadeddu, ANL, USA: MWR mentor for ARM
 - Christine Knist, DWD, DE: MWR responsible for GRUAN LC
- MWR data and calibration center
 - To be established by University of Cologne & Research Centre Jülich (DE)
 - Part of the Center for Cloud Remote Sensing (CCRES) of ACTRIS
 - ACTRIS Aerosols, Clouds and Trace gases Research Infrastructure

• EU MWR network

• EUMETNET will soon decide on the proposal to include MWR in E-PROFILE (part of EUCOS - EUMETNET Composite Observing System)

• All sound very beneficial for the establishment of GRUAN MWR products

Summary and conclusions

- Ongoing activities towards characterization of MWR uncertainty
 - Forward model
 - Calibration monitoring

Thanks much for your attention!

- Prospectives are looking good
 - New highly MWR-qualified TT-GB members
 - MWR calibration center (ACTRIS CCRES)
 - Possible inclusion of MWR within E-PROFILE

Online, 17/11/2020

Back-up slides

Next slides are from ICM-10/11, including open issues

- GRUAN MWR Program Guide
- GRUAN product requirements
- What's missing for a GRUAN MWR product?
- What's missing for full SI-traceability?
- More on absorption model uncertainty

Online, 17/11/2020

GRUAN MWR Program Guide

STATUS:

- Following the GRUAN Guide (GCOS-171)
- First draft delivered (15 April 2016)

• GRUAN MWR Program Guide TD-N.1.0

- 1. Introduction
- 2. Instrumentation
- 3. Reference Measurements
- 4. Measurement Uncertainty
- 5. Measurement Scheduling
- 6. Data Management
- 7. Post-processing Analysis and Feedback
- 8. Quality Management
- 9. Site Assessment and Certification
- Appendix 1 Acronyms
- Appendix 2 Examples of MWR lv1 and lv2 data files
- References

GRUAN MWR Program Guide

- V1.0 touches all sections
 - but it's only a first draft (by no means complete)
- V1.0 is a living document
 - continuous updates following TOPROF/GAIA-CLIM activities
- Drafting stopped when
 - MWR TD-N.1.0 \leftrightarrow MWR Product 1.0

Online, 17/11/2020

GRUAN product requirements

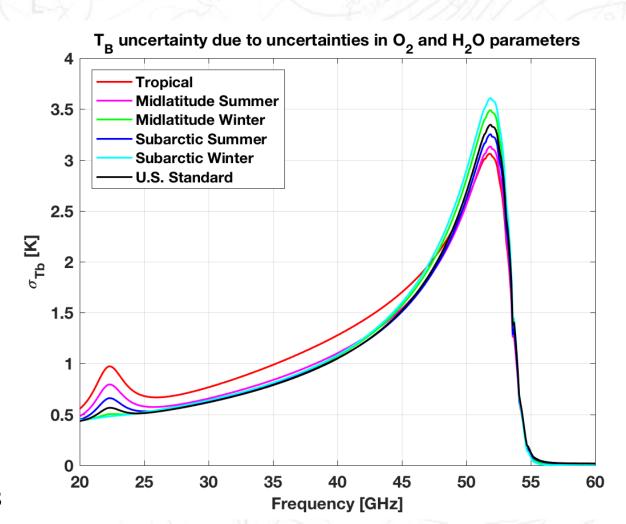
- Data and metadata available
- Open and transparent processing
- Treaceble to SI
- Uncertainty estimate

Online, 17/11/2020

What's missing for a GRUAN MWR product?

- Implementation of automatic MWR data product
 - Who shall/could develop this?
 - Centralized data processing facility?
- Current observation accuracy corresponds to >10-year old technology
 - much better characterization of new generation instruments
 - not currently available at GRUAN sites

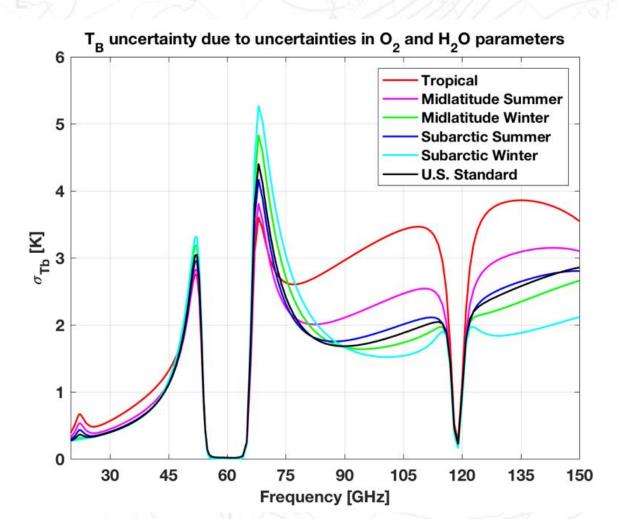
What's missing for full SI-traceability?


1. MW transfer standard calibration targets

- NIST is working on this development
- 2. Certified internal temperature sensors
 - Manufacturers should provide certifications
- 3. Uncertainties on *a priori* model background and radiative transfer model are not SI-traceable

2) Absorption model uncertainty

- Efforts started within GAIA-CLIM
- Completed for 20-60 GHz range within GAIA-CLIM


Cimini et al, ACP 2018

1122

Online, 17/11/2020

2) Absorption model uncertainty

- Extended to higher frequency (up to 150 GHz)
 - To include 70-150 GHz MWR used for CLW retrievals

Cimini et al, GMD 2019

Online, 17/11/2020

2) Absorption model uncertainty

• For a well maintained MWR, absorption model uncertainty explains most of O-B differences

Abs. mod. uncertainty

O-B differences

3 Estimated uncertainty (K) O-B mean difference (K) 2.5 Background: Arome + RTTOV-gb **Observations: HATPRO at JOYCE** T_B uncertainty and bias (K) 2 1.5 0.5 0 31.4 51.26 52.28 53.86 54.94 56.66 22.24 23.04 23.84 25.44 26.24 27.84 57.3 58 **Channel frequency (GHz)**

Cimini et al, GMD 2019