

The ongoing collaboration between GRUAN and the radio occultation community

Jordis Tradowsky

Bodeker Scientific

jordis@bodekerscientific.com

May 24, 2019

Motivation

GRUAN - radio occultation collaboration

> Jordis Tradowsky

Motivation

GRUAN - RC comparison

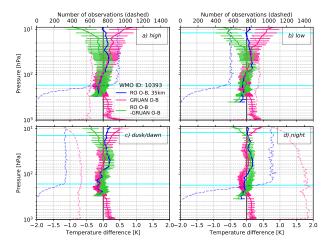
GRUAN uncertainty propagatior

GRUAN-GSICS¹-GNSS-RO²(3G) workshop in Geneva

- better connect GRUAN with satellite community
- compare methods for uncertainty estimation, cal/val
- discuss how to better serve climate/meteorological application
- discuss future observing system design
- Comparison of entirely independent measurement techniques can reveal biases and uncertainties in measurements/retrieval
- In the recent years there is an increased exchange between the communities!

¹Global Space-based Intercalibration System ²Global Navigation Satellite System Radio Occultation

Comparison of RO and GRUAN data at Lingenberg


GRUAN - radio occultation collaboration

> Jordis Tradowsky

Motivation

GRUAN - RC comparison

GRUAN uncertainty propagatio I have been working as a visiting scientist within the Radio Occultation Meteorology Satellite Application Facility and compared GRUAN and RO data as part of the project.

Propagating the GRUAN uncertainties

(1)

GRUAN - radio occultation collaboration

> Jordis Tradowsky

Motivation

GRUAN - RC comparison

GRUAN uncertainty propagation Propagation of uncorrelated uncertainties:

$$\overline{u_{uncorr}} = \frac{1}{N} \sqrt{\sum_{i=1}^{N} u_{uncorr,i}^2}$$

where the uncertainty decreases with $1/\sqrt{(N)}$. Propagation of correlated uncertainties:

1

$$\overline{u_{corr}} = \frac{1}{N} \sum_{i=1}^{N} u_{corr,i}$$
(2)

The total uncertainty on the mean temperature is calculate from the correlated and uncorrelated component as:

$$\sigma_{\overline{T_{GRUAN}}} = \sqrt{\overline{u_{corr}}^2 + \overline{u_{uncorr}}^2}$$
(3)

Uncertainty components

GRUAN - radio occultation collaboration

> Jordis Tradowsky

Motivation

GRUAN - RC comparison

GRUAN uncertainty propagatior

Parameter	Value	(Un)correlated	Data field in product
Repeatability of calibration of the <i>T</i> sensor $u_c(cal)$ Absolute uncertainty of <i>T</i> sensor calibration $u_{c, cal}(T)$	$0.15 \text{ K} \ \sqrt{u_{c}(\text{cal})^{2} + (\Delta T_{\text{GC25}}/3)^{2}}$	correlated correlated	u_cor_temp*
$u_{c,call}(T)$ uncertainty in <i>T</i> due to spike removal Uncertainty in <i>T</i> due to sensor time-lag $\sigma(T)$ Random uncertainty of temperature $u_{u}(T)$	0.05 K < 0.03 K Statistical standard deviation Statistical uncertainty $\sigma(T)/\sqrt{N'}$	correlated correlated uncorrelated uncorrelated	u_std_temp*
Uncertainty of ΔT due to rotating radiosonde $u_{u, rot}(\Delta T)$ Uncertainty of I_a due to albedo $u_c(I_a)$	$\frac{1}{2\sqrt{3}} I_{a}^{clearsky} - I_{a}^{cloudy} $	uncorrelated	u_swrad*
Uncertainty of I_a due to abedo $u_c(I_a)$ Uncertainty in ΔT due to uncertainty in albedo $u_{c,I_a}(\Delta T)$	$\frac{1}{2\cdot\sqrt{3}}I_{a}$ I_{a} I_{a} I_{a} I_{a} I_{a}	correlated	u_swrad
Uncertainty in ventilation velocity $u(v)$ Uncertainty in ΔT due to ventilation uncertainty $u_{u, vent}(\Delta T)$	$\frac{1 \text{ m s}^{-1}}{\Delta T \cdot u(v)/v}$	uncorrelated uncorrelated	
Uncertainty in ΔT due to uncertainty in parameters a and b $u_{c,RC}(\Delta T)$	< 0.2 K	correlated	
Total uncertainty	$[u_{c, cal}(T)^{2} + u_{u}(T)^{2} + u_{u, rot}(\Delta T)^{2} + u_{c, I_{a}}(\Delta T)^{2} + u_{u, vent}(\Delta T)^{2} + u_{c, RC}(\Delta T)^{2}]^{1/2}$	-	u_temp*

 \rightarrow separate correlated and uncorrelated uncertainties as far as possible and propagate them individually

GRUAN - radio occultation collaboration

> Jordis Tradowsky

Motivation

GRUAN - RC comparison

GRUAN uncertainty propagation

Thank you for your attention!

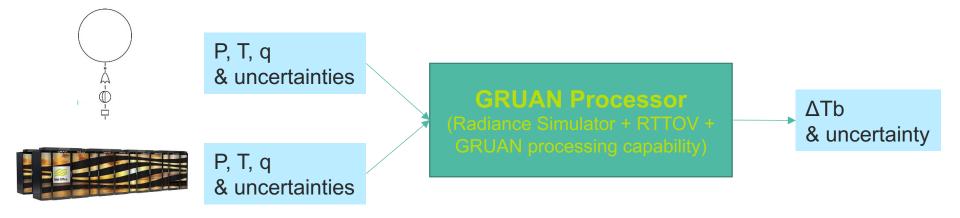
AL HHIDD

Characterisation of NWP model biases and uncertainties using GRUAN radiosondes

Fabien Carminati, Stefano Migliorini, Bruce Ingleby (ECMWF), Heather Lawrence (ECWMF)

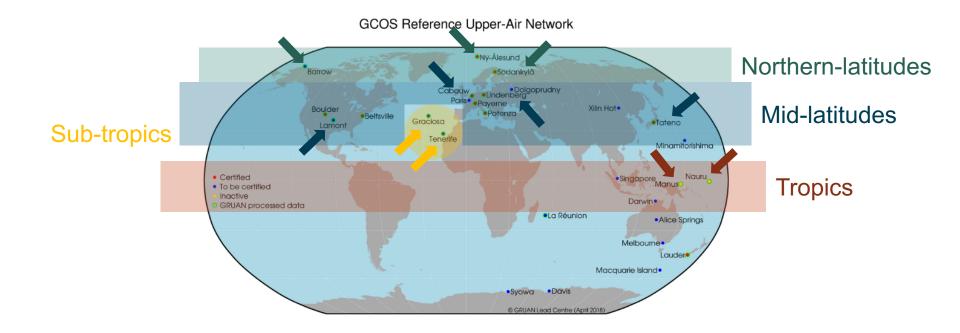
Special thanks to Jordis

www.metoffice.gov.uk

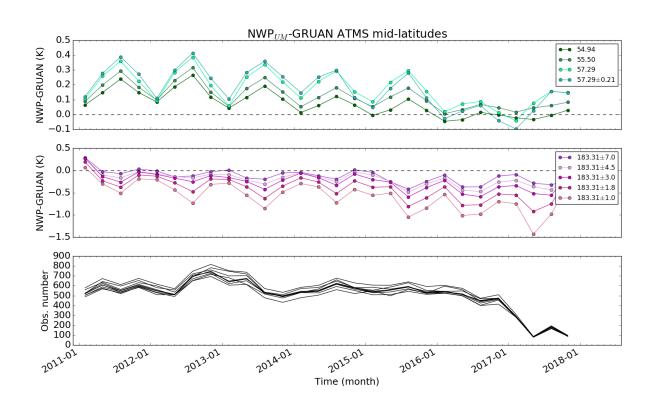


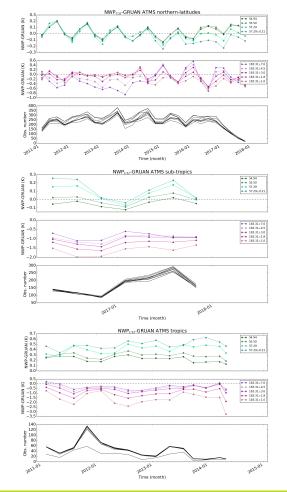
Met Office

How can we "robustly" characterise model biases and uncertainties?

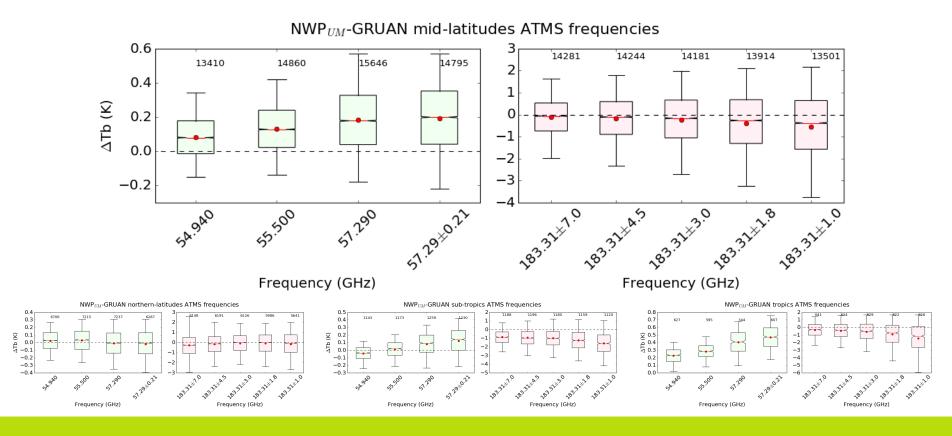

By assessing the model fields with a well characterised reference measurements: GRUAN

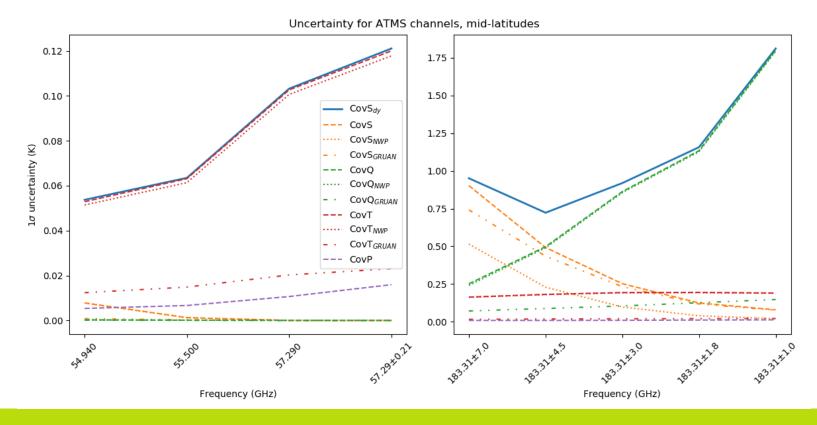
But this need to be done in the same space as that of the O-Bs, i.e. in radiance space.


(see Carminati et al., 2019, for details) https://www.atmos-meas-tech.net/12/83/2019/amt-12-83-2019.html


Met Office Global Climate Observing System (GCOS) Reference Upper-Air Network (GRUAN)

Met Office


Time series (Met Office)


Met Office

Box plot (Met Office)

Uncertainty estimation work in progress (Met Office)

Met Office

Thank you

© Crown Copyright 2018, Met Office