Status of

GRUAN data product development for Modem M10 ICM-11 Singapore $20^{\text{th}} - 24^{\text{th}}$ May 2019

D. Vignelles^(1*), J.-C. Dupont⁽²⁾, F. Marin⁽³⁾ M. Haeffelin⁽²⁾

(1) Meteomodem (2) IPSL (3) MétéoFrance

dvignelles@meteomodem.com

<u>Outline</u>

1. Introduction :

Recent internal changes within Modem and with GRUAN Fr community

2. MétéoFrance:

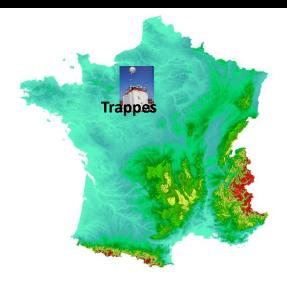
- Gruan RS at Trappes since 2018
- **3. IPSL**:
 - State of data stream in Trappes

4. Modem:

Status and advancement of M10 uncertainties

<u>1. Introduction – recent changes</u>

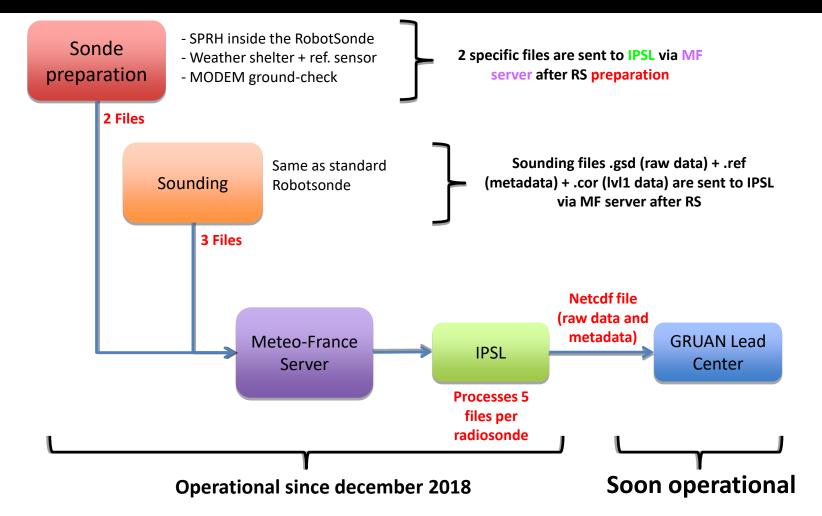
- Gaëlle Clain departure June 2018
- Damien Vignelles arrival September 2018
 - Research engineer
 - PhD in climatology and physico-chemistry of Earth atmosphere oriented in instrumentation and metrology
 - 50 % on GRUAN
 - 25% on BASTA Cloud radar W band (2 PhD on calibration process (ACTRIS-Fr) and cloud classification)
 - 25% on LOAC stratospheric aerosol counter (involved in STRATEOL Phase 2 for cirrus characteristics and distributions)


- Reorganization of GRUAN-Fr M10
 - MétéoFrance operational (F. Marin)
 - IPSL data flux & GRUAN relations (J-C Dupont & M. Haeffelin)
 - Meteomodem metrological tests (D. Vignelles)

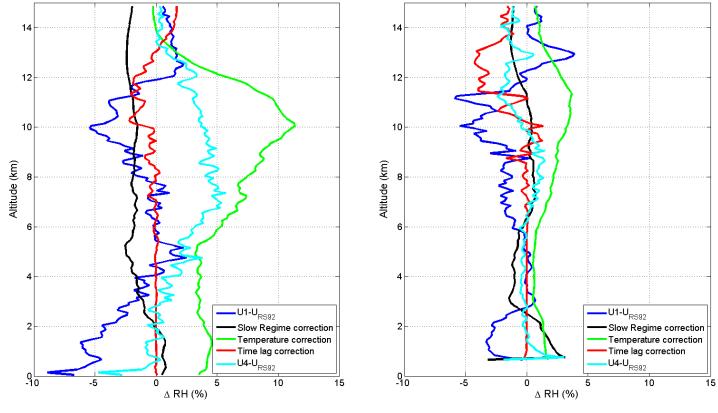
2. Operational Trappes site MétéoFrance

- Trappes site : historic RS station (1927)
- GRUAN procedures for all RS since 2018 twice a day

2. Trappes MétéoFrance GRUAN procedure


- Calibration of 100% humidity
 - GRUAN humidity chamber to produce a saturated environment
 - Data acquisition with a M10 radiosonde for 5 minutes
 - M10 data sent to the IPSL server with the serial number of the probe tested
- Calibration of ambient conditions
 - Stevenson screen with small van
 - Data acquisition of the M10 and a reference HMP110 sensor (Vaisala) for 5 minutes
 - M10 and HMP110 sent to the IPSL with the serial number of the probe tested

2. Trappes MétéoFrance GRUAN procedure

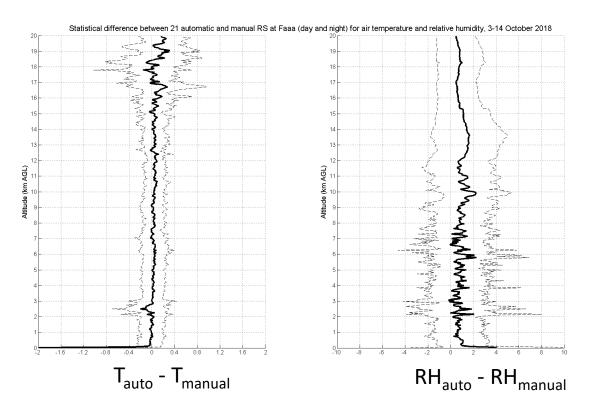

- After the calibrations
 - M10 is loaded into the Robotsonde according to the procedure (which include the ground check calibration)
 - Trappes Robotsonde is loaded twice a week, M10 loaded remains in the Robotsonde for a maximum of a few days before the flight
- M10 data and metadata are sent to the IPSL server after the flight

- Current status
 - Discussion with M. Sommer to finalize the automatic way to send the measurement data to GRUAN:
 - Configuration of the RSlaunch client,
 - First set of data/metadata already in processing
 - Tools need to be configured to this new french site
 - Processing of a complete dataset (2003-2018) available for future improvement related to GRUAN methodology
- Perspectives
 - Apply the automatic transfer of Trappes raw M10 dataset to the GRUAN LeadCenter
 - Develop methodology to produce L1 data following the GRUAN recommendations

- Production of a M10 IPSL algorithm and a comparative study with RS92 (51 dual flights)
 - 4 steps of post-traitments
 - Calibration correction
 - Slow regime due to the slow diffusion of molecules in the sensor
 - Relative humidity sensor dependence on the gradient of temperature
 - Time lag at cold temperatures which affects measurements in regions of strong relative humidity gradients
 - Comparisons M10 / RS92 (accepted in JAOT Journal)
 - Mean differences better than 2%RH for nighttime launches
 - Better than 5%RH during daytime

BEFORE, AFTER

BEFORE, AFTER


Journal of Atmospheric and Oceanic Technology Characterization and corrections of relative humidity measurement from MODEM M10 radiosondes at mid-latitude stations --Manuscript Draft--

3. Field experiment of dual sounding

- 21 dual soundings at Faa'a (October 2018)
- M10 raw dataset available and analysed by Fabio Madonna for the current article on automatic sounding systems
- A new campaign will be done at Trappes site need to be scheduled (before the end of 2019)

3. Field experiment of dual sounding

- Similar methodology to compar Vaisala, Meisei and Modem automatic systems
- Same figure for T and RH difference at each altitude with 50 m vertical grid
- Same equation to process the distance between the two sondes (automatic and automatic)

4. Status and advancement of M10 performances

RH

- Calibration
 - Sensor calibration
 - (done : U_c = 2.18 %RH k = 2 based 2018 dataset Type A)
 - Based on factory production check before shipping from Modem Compared to a calibrated Rotronic HC2A-S +/- 0.8 %RH (k =2)
 - Sensor adjustment (SPRH 100 and/or Groundcheck)
 - (need to be determined first tests done on SPRH100 related to reproducibility but problem on the SPRH100 we have Type A probably)
 - First test on repeatability and reproducibility
 - Need to discuss the need of a reference and so considered its uncertainty

Time-lag fast response

- Fast response time determination
 - (First estimation using the tropopause level need laboratory experiment) Lindenberg ? Type A ?
- Time-lag correction
 - (correlated and uncorrelated U. // Dirken et al. 2014) type B ?

4. Status and advancement of M10 performances

RH

σ

01

2

Singapore

-11

Ś

Time-lag slow response

- Slow response time determination
 - (need to determine a protocol, certainly type A)
 - We could use the double pressure chamber to address the second time lag
- Time-lag correction
 - (correlated and uncorrelated // Dirken et al. 2014 in progress)

Temperature dependency

- Temperature uncertainties (Ta & Tu)
 - (need to be done // Dirksen et al. 2014)
- Temperature dependency correction
 - (need to be done // Dirksen et al. 2014)

Others uncertainties needed to be considered

- Hysteresis ?
 - (need to be discussed need to do in Lindenberg type A ?)

4. Status and advancement of M10 performances

Air temperature

- Sensor calibration
 - (need to be done type A)
- Radiation effect
 - (experiment done in 2013 need a redaction type B)

GPS geopotential altitude

- Manufacturer uncertainty
 - (Need a redaction type B)
- Variability of altitude at ground
 - (in progress following the Meisei methodology type A)
- Transformation from geometrical to geopotential altitude
 - (need to be done type B)

Zonal and meridional wind

- Variability of doppler speed data
 - (in progress type A)
- Effect of the low-pass filter
 - (need to be done type B ?)

Summary

- Gruan RS at Trappes since 2018
- Data stream operational soon
- RH characterization and corrections under review JAOT
- M10 uncertainties is in progress
 - Perhaps needs for methods and requirements

