Calibration of a Radiosonde Humidity Sensor using the Low-temperature Low-pressure Humidity Chamber at KRISS

11th GRUAN Implementation and Coordination Meeting

21 May, 2019

Furama City Centre Hotel, Singapore

Sang-Wook Lee*, Byung Il Choi, Sang-Bong Woo, & Yong-Gyoo Kim

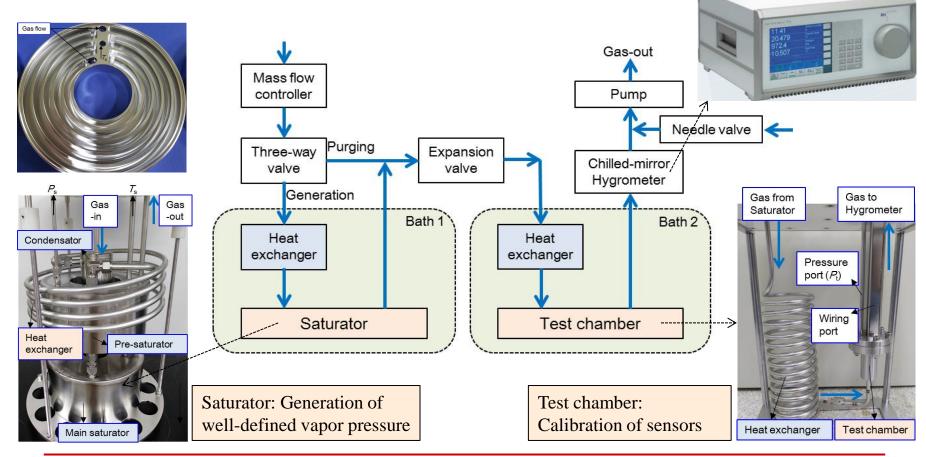
Center for Thermometry and Fluid Flow

Korea Research Institute of Standards and Science (KRISS)

*sangwook@kriss.re.kr

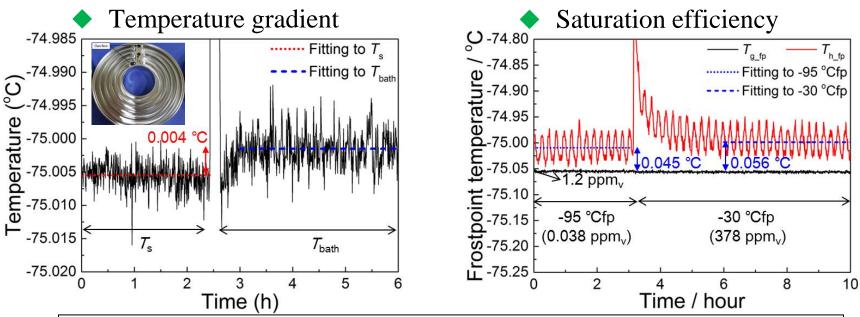
Calibration facilities for radiosonde humidity sensors

- ☐ Humidity measurement conditions in upper air
 - ◆ Temperature (< -80 °C)
 - ◆ Pressure (< 10 hPa)
 - ◆ Frost-point temperature (< -90 °C)
- Quality control of humidity measurements
 - SI-traceable calibration of humidity sensors using ground facilities
 - Low-pressure low-temperature humidity generators



VTT in Finland INRIM in Italy KRISS in Korea

Humidity calibration facility at KRISS


- ☐ Low-temperature Low-pressure humidity chamber
 - ◆ Two-temperature two-pressure (2T2P) humidity generator

Hygrometer: Validation

Humidity generation by the saturator

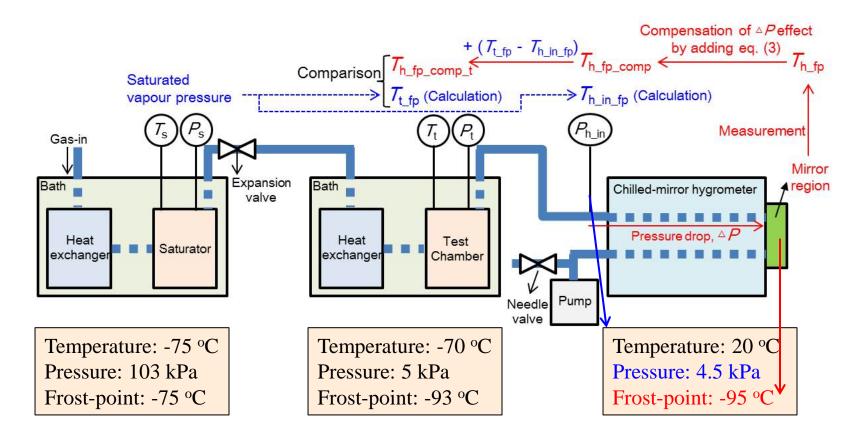
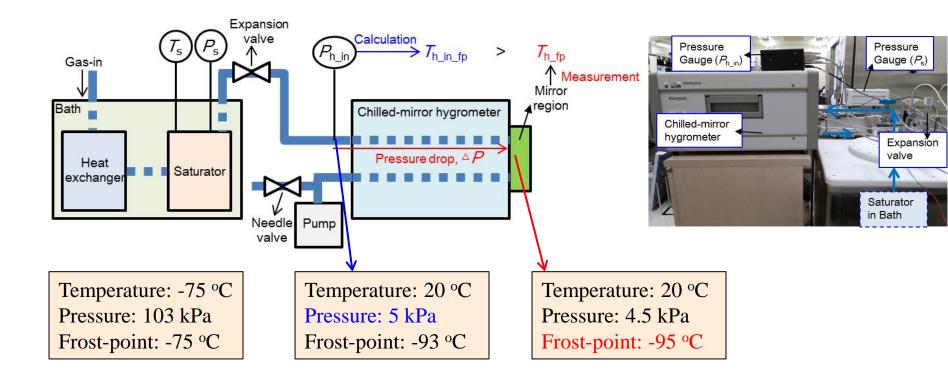
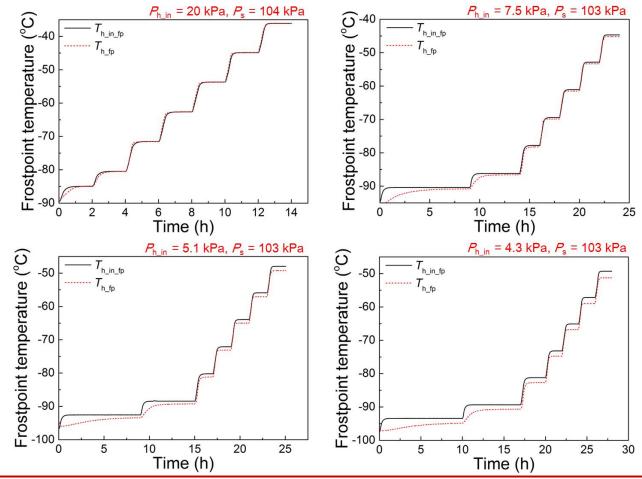

☐ Saturator performance at atmospheric pressure

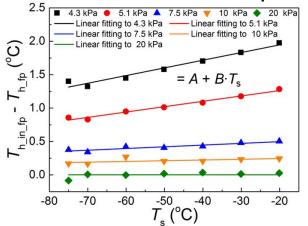
Table 1. Uncertainty budget on frost-point temperature of the saturator at $T_s = -75$ °C and at atmospheric pressure.									
Uncertainty component	Unit	Standard uncertainty	Probability distribution	Sensitivity coefficient	Contribution to uncertainty (°C)				
Saturator temperature stability	°C	0.0038	Normal	1	0.0038				
Saturator temperature gradient	$^{\circ}\mathrm{C}$	0.0023	Rectangular	1	0.0023				
PRT calibration	°C	0.025	Normal	1	0.025				
Multimeter accuracy	Ω	0.002	Rectangular	$2.528~^{\circ}\mathrm{C}~\Omega^{-1}$	0.0051				
Saturation efficiency	$^{\circ}\mathrm{C}$	0.0064	Rectangular	1	0.0064				
Combined standard uncertainty $(k = 1)$	°C		-		0.0267				
Expanded uncertainty $(k = 2)$	°C				0.0533				

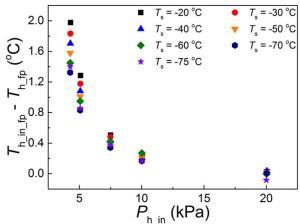

Difficulty in humidity validation at low pressure

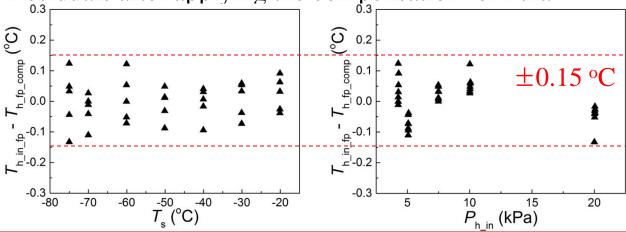
 \bullet A pressure drop inside hygrometer \rightarrow Drop of frost-point temperature


Compensation of low-pressure effects

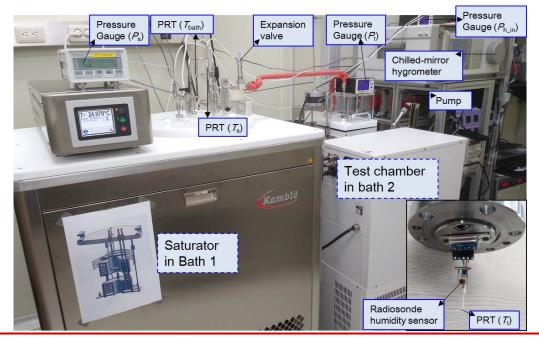
• Scheme for compensating pressure drop ($\triangle P$) inside the hygrometer


Validation of generated humidity


- ☐ Humidity generation and measurement at low pressures
 - ◆ Difference between the generator and the hygrometer


Validation of generated humidity

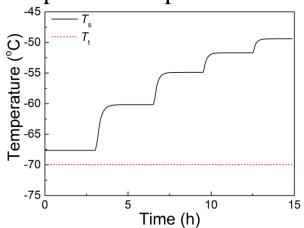
- ☐ Compensation for low-pressure effects
 - Formulation of the compensation

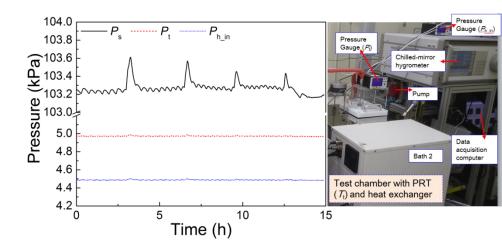


• Residuals after applying the compensation formula

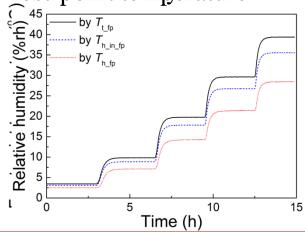
Low-temperature Low-pressure humidity chamber

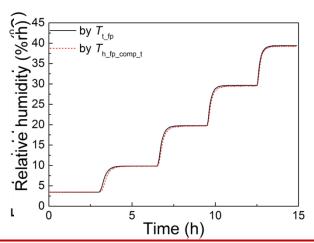
- Operation range in test chamber
 - The humidity sensor meets
 - Temperature: (-70 30) °C
 - Pressure: (50 1000) hPa
 - Dew/frost point temperature: (-90 20) °Cdp/fp
 - Relative humidity: (2-100) %rh



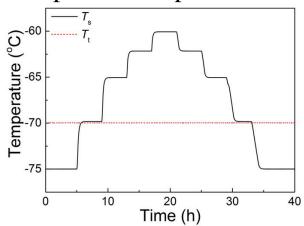


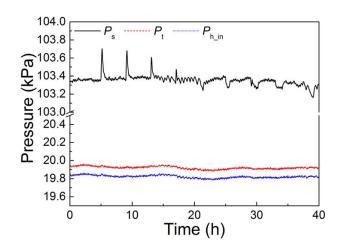
Humidity generation & validation I

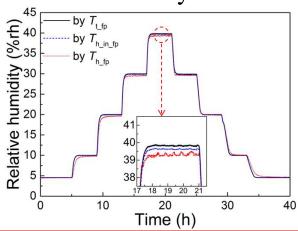

□ -70 °C & 5 kPa in test chamber

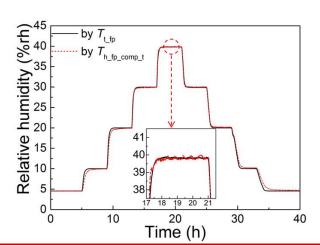

◆ Temperature & pressure

◆ RedatipeIntrediperature





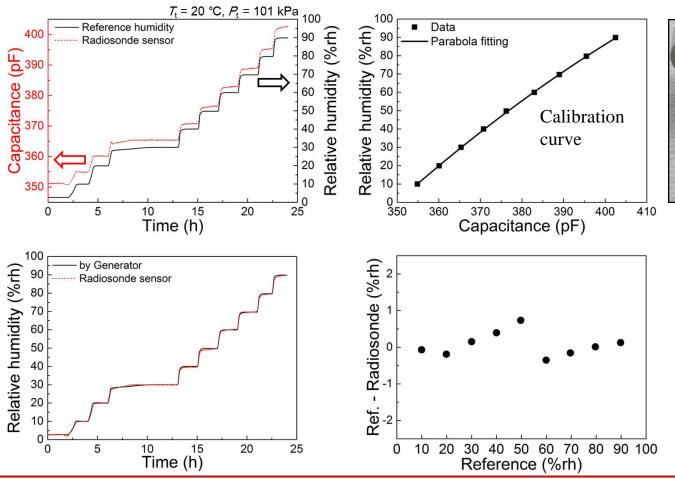

Humidity generation & validation II


- □ -70 °C & 20 kPa in test chamber
 - ◆ Temperature & pressure

Relative humidity

Uncertainty

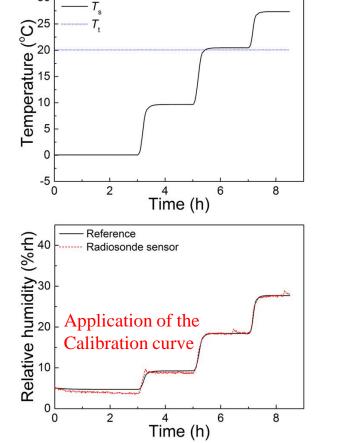
□ -70 °C & 4.6 kPa in test chamber

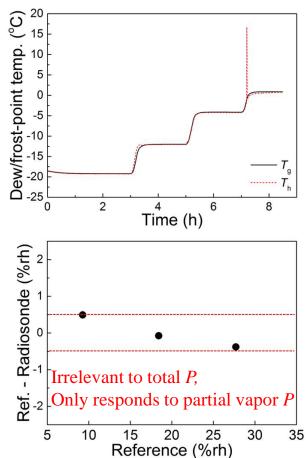

Table 4. Uncertainty budget on relative humidity at $T_t = -70$ °C and $P_t = 4.6$ kPa.

Relative humidity at $T_t = -70 \text{ °C}$, $P_t = 20 \text{ kPa}$	%rh	10.10	20.18	30.16	40.05	10.10	20.18	30.16	40.05	10.10	20.18	30.16	40.05
Uncertainty component	Unit		Standard uncertainty			Sensitivity coefficient			Contribution to uncertainty				
Saturator temperature, $u(T_s)$	°C	0.026	0.026	0.026	0.026	1.350	2.571	3.735	4.860	0.035	0.067	0.097	0.126
Saturator pressure, $u(P_s)$	kPa	0.040	0.040	0.040	0.040	0.097	0.194	0.290	0.385	0.004	0.008	0.012	0.015
Saturation vapour pressure in saturator, $u_r(e_{is}(T_s))$	Pa	0.00163	0.00290	0.00403	0.00505	8.528	8.528	8.523	8.534	0.014	0.025	0.034	0.043
Enhancement factor in saturator, $u_r(f(P_s, T_s))$		0.00037	0.00034	0.00033	0.00032	10.034	20.061	29.992	39.829	0.004	0.007	0.010	0.013
Test chamber temperature, $u(T_t)$	K	0.032	0.032	0.032	0.032	-1.399	-2.796	-4.181	-5.552	-0.045	-0.089	-0.134	-0.178
Test chamber pressure, $u(P_t)$	kPa	0.020	0.020	0.020	0.020	2.184	4.366	6.531	8.662	0.043	0.087	0.130	0.172
Saturation vapour pressure in test chamber, $u_r(e_{ws}(T_t))$	Pa	0.002	0.002	0.002	0.002	19.252	38.493	57.554	76.433	0.035	0.069	0.103	0.137
Enhancement factor in test chamber, $u_t(f(T_t, P_t))$		0.00000	0.00000	0.00000	0.00000	-10.034	-20.063	-30.012	-39.835	0.000	0.000	0.000	0.000
Saturator efficiency, <i>u</i> (Efficiency)	°C	0.006	0.006	0.006	0.006	1.652	3.162	4.608	6.009	0.011	0.020	0.029	0.038
Adsorption/desorption, $u(Ads./Des.)$	°C	0.073	0.025	0.024	0.024	1.652	3.162	4.608	6.009	0.120	0.080	0.111	0.145
hygrometer pressure gradients, $u(\Delta P)$	°C	0.153	0.153	0.153	0.153	1.652	3.162	4.608	6.009	0.252	0.483	0.703	0.917
Combined standard uncertainty, $u_c(RH)$ $(k = 1)$	%rh									0.291	0.515	0.751	0.981
Expanded uncertainty, $u(RH)$ $(k = 2)$	%rh									0.582	1.030	1.502	1.961

%rh

- Calibration curve at room temperature
 - ◆ 20 °C & 100 kPa

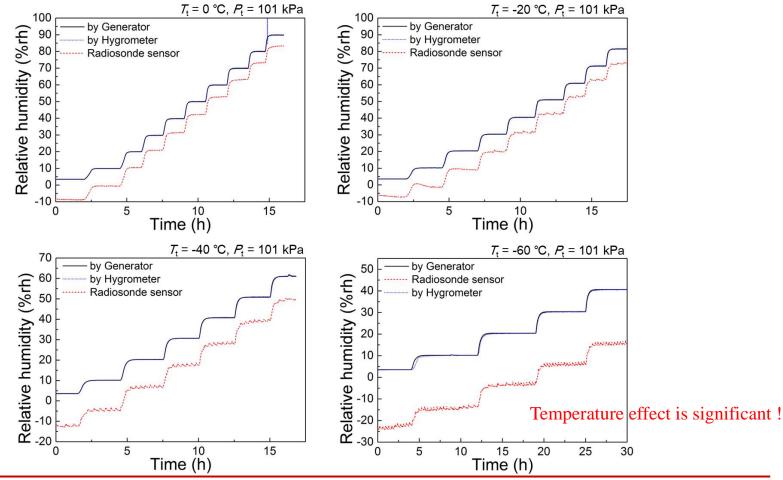


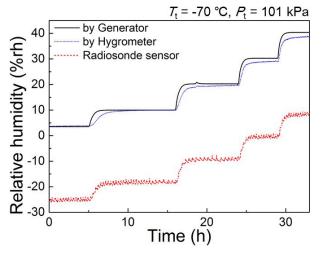

Radiosonde

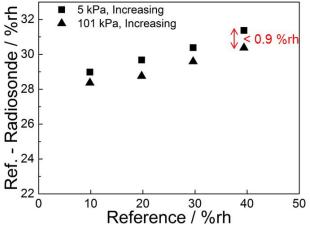
humidity sensor

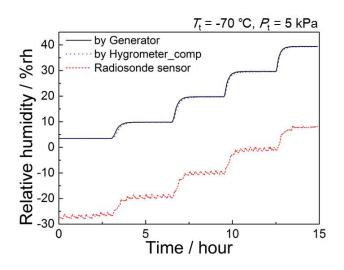
 $T_t = 20 \, ^{\circ}\text{C}, P_t = 20 \, \text{kPa}$

- ☐ Testing low-pressure effects at room temperature
 - ◆ 20 °C & 20 kPa

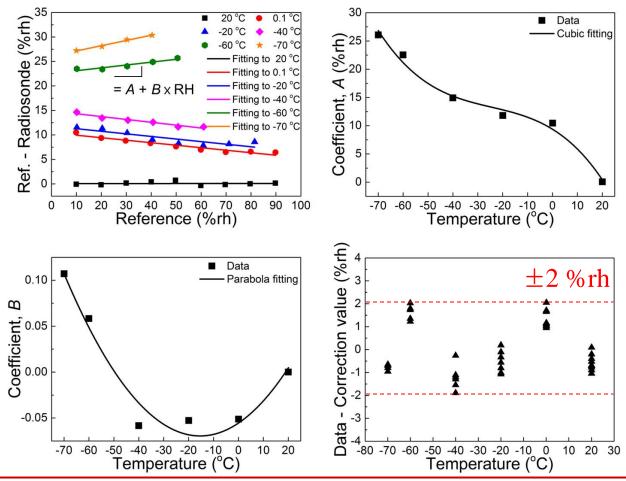





☐ Low-temperature effects


◆ 0 °C, -20 °C, -40 °C, -60 °C (at 100 kPa)

- ☐ Low-pressure effect at low-temperature
 - ◆ -70 °C at 100 kPa & 5 kPa

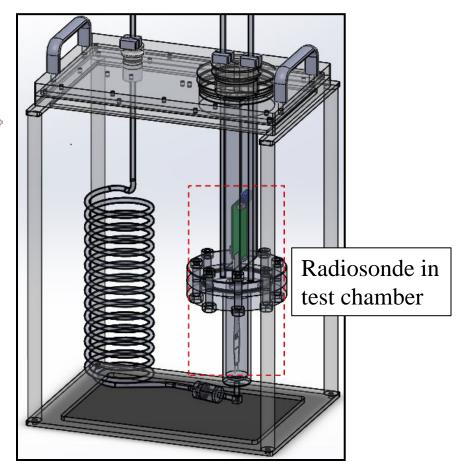


Pressure effect is small even at -70 °C and, thus, is considered as an uncertainty factor

Compensation formula

 \bullet Empirical compensation formula covering (-70 – 20) °C & (50 – 1000) hPa

Uncertainty of the sensor


- \square Uncertainty including compensation of P & T effects
 - ♦ Temperature & pressure range: (-70 20) °C & (50 1000) hPa

Uncertainty component	Unit	Standard uncertainty	Probability distribution	Sensitivity coefficient	Contribution to uncertainty (%rh)	
Unceratainty of humidity generator	%rh	0.98 %rh	Normal	1	0.98	
Sensor stability	%rh	0.39 %rh	Normal	1	0.39	
Sensor hysteresis	%rh	0.66 %rh	Rectangular	1	0.66	
Pressure effect	%rh	0.50 %rh	Rectangular	1	0.50	
Sensor reproducibility	%rh	0.65 %rh	Rectangular	1	0.65	
Compensation formula	%rh	1.18 %rh	Rectangular	1	1.18	
Combined standard uncer tainty (k = 1)	%rh				1.90	
Expanded uncertainty $(k = 2)$	%rh				3.80 %rh	

Future works

- ☐ Compensation of a whole radiosonde
 - \bullet Just a humidity sensor \rightarrow a whole radiosonde

Summary

- ☐ Low-temperature & low-pressure humidity chamber is developed
 - Operating in a two-temperature & two-pressure mode
 - Operating at low-temperature (-70 20) °C and low-pressure (50 1000) hPa
 - Generating dew/frost point temperature (-90 20) $^{\circ}$ Cdp/fp and relative humidity (2 100) %rh
 - Generated humidity is validated by an independent hygrometer
 - Expanded uncertainty of the humidity chamber is less than 2 % rh (k = 2).
- ☐ Radiosonde humidity sensor is calibrated using the chamber
 - Calibration range: (-70 20) °C & (50 1000) hPa
 - ◆ Temperature effect is significant whereas pressure effect is small
 - ◆ Temperature, pressure, hysteresis, reproducibility, and so on are considered.
 - \bullet Expanded uncertainty of the humidity sensor is 3.8 %rh (k = 2).
 - ◆ SI-traceable calibration at low-temperature and low-pressure

Thank you for your attention

(More discussions to sangwook@kriss.re.kr)