Development of a Cloud Particle Sensor (CPS) for radiosonde sounding

<u>Masatomo Fujiwara¹</u>, T. Sugidachi^{1,2}, T. Arai¹,

K. Shimizu², M. Hayashi³, Y. Noma³, H. Kawagita³, K. Sagara³, T. Nakagawa⁴, S. Okumura⁴, Y. Inai⁵, T. Shibata⁶, S. Iwasaki⁷, and A. Shimizu⁸

¹Hokkaido Univ., Japan; ²Meisei Electric Co., Ltd.; ³Shinyei Technology Co., Ltd.; ⁴Shinyei K.; ⁵Tohoku Univ.; ⁶Nagoya Univ.; ⁷NDA; ⁸NIES

Introduction

- Clouds play various roles in the weather and climate . . . through latent heat transport, precipitation and the hydrological cycle, and shortwave and longwave radiative processes.
- There are several in situ cloud microphysical sensors for aircraft and weather balloon platforms.
- Balloon sensors include: NCAR Formvar replicator, HYVIS (Hydrometer Video-Sonde, JMA-MRI/Meisei), Videosonde (Kyushu Univ./Yamaguchi Univ., Japan), Backscattersonde, COBALD (Compact Optical Back- scatter Aerosol Detector, ETH), etc.
- The masses of these balloon-borne particle instruments range from 1 to 6 kg, except for COBALD whose mass is 500 g.
- A cloud particle instrument of similar mass (and cost) to radiosondes would be useful for e.g., cloud sciences, radiosonde RH sensor validation, etc.
- Shinyei Technology Co. Ltd., Japan, has several particle sensors, including a compact, light, and low-cost optical pollen sensor <u>PS2</u>.
- Based on this PS2, with an interface to Meisei RS-06G or RS-11G radiosondes, a balloon-borne small mass (~200 g) cloud sensor called the Cloud Particle Sensor (CPS) has been developed.

Two PS2 instruments in an instrument shelter. http://www.shinyei.co.jp/stc/eng2

Instrumentation (1)

- Particles are introduced into the detection area in CPS using balloon ascent/descent motion:
 - A diode laser: Source of linearly polarized light at ~790 nm.
 - Two photo detectors: Silicon photo diodes, placed at angles of 55 deg. (detector #1) and 125 deg. (detector #2) with respect to the source-light direction. A polarization plate is placed in front of detector #2.
 - Detection area: Roughly ~1 cm x 1 cm (horizontally) x ~0.5 cm (vertically). Thus, its volume is ~0.5 cm³.
- A particle that passes through the detection area scatters the laser light, and the two detectors receive the <u>scattered light signal</u> and thus <u>count that particle</u>.

Instrumentation (2)

- The degree of polarization (<u>DOP</u>) is defined, to characterize the phase of the cloud particle, as: DOP=(I₅₅ - I_{125p}) / (I₅₅ + I_{125p})
- DOP should be close to unity for spherical (i.e. liquid) particles (as I_{125p} = ~0), while DOP would take various values between -1 and +1 for non-spherical ice crystals.
- The original measurement is <u>number of particles counted</u> <u>per second</u>. It can be converted to <u>number concentration</u> if the flow speed in the detection area is known/inferred.
- Upper limit for the number concentration & a proposed partial correction of the number of particles:
 - The volume of the detection area is non-zero and estimated as ~0.5 cm³.
 - If there are 2 particles or more, CPS cannot count particles correctly – thus, the upper limit would be ~2 cm⁻³.
 - <u>Particle signal width</u> (in milli-second) is also monitored, which can be used to infer the degree of particle overlapping.

Laboratory experiments

- Various types of **standard spherical particles** were used
 - (1) to determine the lower detection limit and the relationship between the I₅₅ value and the water/ice diameter,
 - (2) to investigate the DOP distributions for spherical (thus water) particles
- (Mie scattering theory was used to convert the diameters of the standard spherical particles to those of spherical water droplets and those of hypothetical spherical ice particles.)
- The CPS was unable to detect 1 μm diameter polystyrene particles but could <u>detect 2 μm diameter</u> borosilicate glass particles.

- Standard spherical particles are: polystyrene (1 μm), borosilicate glass (2, 5, 10, and 20 μm), and soda lime glass (30, 60, and 100 μm).
- ~1000 to ~8000 particles were used for each type.

Flight results (1/2) Mid-latitude site Moriya, Japan, 17:30 LT, 21 January 2015

(d) DOP: This suggests that the clouds at 1–4.5 km were in <u>mixed</u> <u>phase</u> where water and ice clouds coexisted.

Flight Results (2/2) Tropical site Biak Indonesia, 18:00 LT, 27 February 2015

Summary and future plans

- CPS is a small-mass (~200 g) optical particle counter for radiosounding (currently with Meisei radiosondes).
- Lower limit of the particle size is ~2 μm; capable of ice/liquid water distinction; upper limit of number concentration is ~2 cm⁻³, with a proposed correction algorithm.
- (Because of the near-IR light measurements, day-time soundings need some special considerations.)
- Possible scientific applications include:
 - cirrus cloud processes in the upper troposphere
 - radiosonde RH sensor validation e.g., during radiosonde intercomparison campaigns
 - applications for dropsonde systems, long-duration balloon systems, etc.
- Intercomparisons with other, well-characterized cloud particle instruments are necessary for the uncertainty quantification for (corrected) number concentration measurements.
- Reference: Fujiwara, M., Sugidachi, T., Arai, T., Shimizu, K., Hayashi, M., Noma, Y., Kawagita, H., Sagara, K., Nakagawa, T., Okumura, S., Inai, Y., Shibata, T., Iwasaki, S., and Shimizu, A.: Development of a cloud particle sensor for radiosonde sounding, *Atmos. Meas. Tech., 9*, 5911-5931, doi: 10.5194/amt-9-5911-2016, 2016. [http://doi.org/10.5194/amt-9-5911-2016]
 - Four flight results (including the two cases in previous slides) are shown and discussed in detail in this paper!
- During 2016-2018, several flights have been made in Japan (with HYVIS), India (including BATAL project), and Tarawa (Kiribati; SOWER).
- Currently, Version 2/3 of the CPS is being developed, aiming at the use in dropsonde systems.