IAGOS-RH/T Measurements: Update on QA Efforts

www.iagos.org

Herman Smit, Susanne Rohs and Patrick Neis Forschungszentrum Jülich GmbH h.smit@fz-juelich.de

Smit: IAGOS-RH/T Measurements: An Update on QA-Efforts

IAGOS - CORE Flight Map

http://www.iagos.fr

New 2017/2018: CAL#2, AF#2, HAL & <u>Finnair</u>

IAGOS-CORE aircraft schedule:

- In 2017/2018, 9 equipped aircraft in regular operation. Planned 15 A/C's in 2020
- Approx. 500 flights per aircraft per year
- More than 200 airports worldwide visited regularly

IAGOS & MOZAIC: RH,T Sensor in TAT-Inlet

In inlet strong speed reduction (Mach≈0.8 to 0) with adiabatic conversion:

- > Heating (SAT to TAT) : in UT \approx 30°C
- > Compression (P_S to P_D): in UT \approx Factor 1.6
- \succ RH at detector (RH_D) more than factor 10 smaller than RH sampled air (RH_s)

IAGOS & MOZAIC Capacitive Hygrometer (MCH & ICH): Pre- & Post-Flight Calibration

- Regular calibration (every 1000 flight hours in the ESF (Env.Sim.Fac.) at Juelich, Germany
- Since 2016, against MBW 373 LX Cryo-genic Frostpoint Hygrometer. Before Lyman(α)fluorescence hygrometer at T_{Air} <-10 °C and Frost-point hygrometer at T_{Air}>-10 °C with relative uncertainty better than 5%
- Under realistic "flight" conditions of humidity, temperature and pressure

$$RH_{Cal}(T_i) = a(T_i) + b(T_i) \times RH_{UnCal}(T_i)$$

MOZAIC-Humidity Device: Performance

Horizontal resolution	Relative Humidity: $\Delta X \cong Aircraft$ speed x Response time $\Delta X \cong 15$ km @ Z \cong 8-12 km cruise altitude
Precision	Relative Humidity: ± (1-2)% RH @ Z=0-8 km ± (2-4)% RH @ Z= 8-12 km Temperature ± (0.1-0.2) K @ Z= 0-12 km
Uncertainty	Relative Humidity: ± (5-6)% RH @ Z= 0-12 km Temperature: ± (0.5-1.0) K @ Z= 0-12 km

Temperature Trends HIGHLIGHTS : UTLS TEMPERATURE AND CLOUDS

20 years of temperature measurements in the tropopause region indicate:

- De-seasonalized time series show:
 ⇒ no significant trends in the UTLS.
- This contradicts +0.56 K/decade predicted by ERA 40.

⇒ Details: Berkes et al., ACP 2017

Observation of clouds and water vapour provide new insights in cirrus properties:

- Probability of higher dynamic equilibrium RH_{ice} correlates with higher N_{ice}.
- Thin cirrus (N_{ice} < 0.1 cm⁻³) dominate cirrus at mid-latitudes.
- ⇒ Details: Petzold et al., Farad. Discuss. 2017

IAGOS-RH : TRENDS

Time series of IAGOS water vapour in the UTLS over the North Atlantic (40-60 °N, LS: PV>2.0 pvu & UT: PV < 2.0 pvu)

IAGOS-RH : TRENDS

De-seasonalized time series of IAGOS water vapour in the UTLS over the North Atlantic (40-60 °N, LS: PV>2.0 pvu & UT: PV < 2.0 pvu)

IAGOS-RH/T: WATER VAPOR & TEMPERATURE TRENDS

Estimation of numbers of years needed to detect a trend: 95 % confidence level, 90 % probability

(Wheatherhead et al., 1998; Whiteman et al., 2011)

n* is the number of years to detect a trend,

 ${\bf 6}_{\rm N}$ is the standard deviation of the total noise in the time series (% of mean value), and

 $\Phi_{\rm N}$ is the autocorrelation of the noise.

	RH _{ice}	H ₂ O VMR
Estimated Trend from Obs.	0.0 %/year	0.04 %/year
б _N	11.6 %	17.5 %
Φ_{N}	0.26	0.29
n* (ω_0 = 0.5 %/year)	21.5	28.9
n* ($\omega_0 = 1 \%$ /year)	13.5	18.2

High Natural Variability of Water Vaour in UT

- > 10 % over distance of 20 km
- < 1% over distance < 1 km

MOZAIC-Humidity Device (MHD): Application of In-Flight Calibration (IFC)

[Smit et al., J.Atm.Ocean.Tech., 2008]

- Based on the technology and experience obtained during more than one decade of MOZAIC-RH/T operation.
- Long-term zero drift of MOZAIC-device, particularly at low temperatures, is the critical and accuracy determining parameter
- In-Flight determination of long term zero drift during dry stratospheric episodes as a function of temperature (RH₀(T) at 5ppmv water vapor).
- Correction of zero drift of RH-measurements
- Re-analysis of RH-Data in 2017/2018: Application of IFC on 20 years of MOZAIC-RH measurements

2017/2018: Re-Analyis of 20 years of MOZAIC-Relative Humidity Measurements: Application of In-Flight Calibration (IFC)

Before: (Smit et al., 2014))

After: (Neis-Rohs-Smit)

MOZAIC Versus Radiosondes: Comparison RH at PBL

Study by Herve Petitin, Submitted to ACPD, April 2018

DENCHAR-LICC 2010: WVSS-II @ ESF Perfomance P,T,H2O: 14 Oct.2010

Smit: IAGOS-H2O & its QA Efforts GRUAN ICM#09 Annual Meeting ,12-16 June 2017, Helsinki Finland Suggestions of Performance/Validation Studies or Intercomparisons of Different Hygrometers to be done in the ESF (Env.Sim.Facility at Jülich) in the scope of GRUAN or NDACC

- 1. CFH versus FPH against MBW 373 or other Hygrometer
- 2. New Instruments
- Advantage ESF: Entire sonde package under realistic atmospheric pressure, temperature, and humidity conditions
- Time schedule: 2019-2020

Any Interest from GRUAN ?

