Report of CoreTemp2017: Intercomparison of dual thermistor radiosonde (DTR) with RS41, RS92 and DFM09 radiosondes

Yong-Gyoo Kim*, Ph.D and GRUAN Lead center

*Upper-air measurement team

Center for Thermometry and Fluid Flow

KRISS, Daejeon, Korea

dragon@kriss.re.kr

Introduction

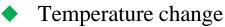
Comparison Details

Comparison Results

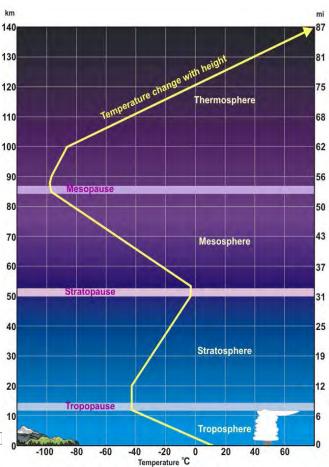
Discussions

Summary

1 Introduction


Air temperature

Direct index of global warming


- Very basic to the energy budget of the climate system
- Essential for understanding and predicting the behavior of the atmosphere

Upper air temperature

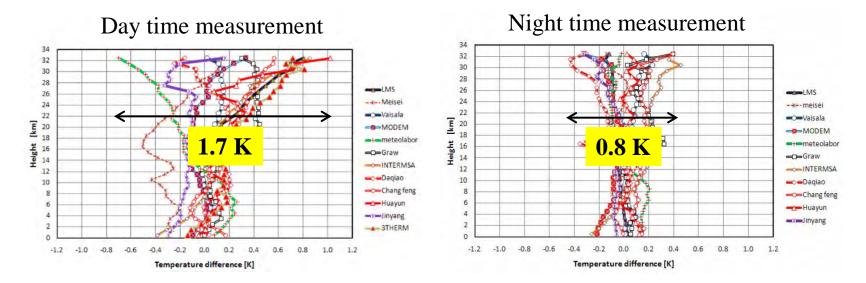
- Key importance for detecting and attributing climate change in troposphere and stratosphere
- Needed for the development and evaluation of climate models and for the initialization of forecasts

- influencing the *hydrological and constituent cycles*
- changing in *water vapor contents and cloud form*ation
- Affecting the *polar stratosphere clouds* and consequential **ozone loss**

Requiring precise and traceable measurement

Radiosonde

- Crucially important instruments for upper-air measurements by WMO
 - Battery-powered telemetry instrument
 - Carried into atmosphere by a weather balloon
 - to measure temperature, humidity, pressure, altitude, geographical position, wind speed and direction, cosmic ray, etc
 - Operated at a radio frequency of 403 MHz ~ 1680 MHz



8th 2010 WMO Radiosonde intercomparison

Yangjiang, China

□ Larger day time temperature differences than night time

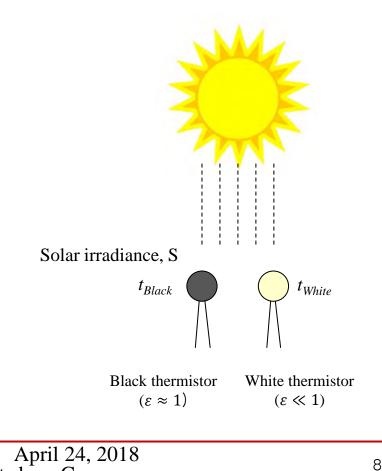
Due to the solar radiation effects (solar heating)

Software radiation correction of Yangjiang

Manufacturer	Correction at 10 hPa /ºC	Temperature sensor type
LMS	0.95	Thermistor
Modem	1.5	Thermistor
InterMet	1.1	Thermistor
Jinyang	2.1	Thermistor
Changfeng	0.6	Thermistor
Huayun	2.3	Thermistor
Graw	1.0	Thermistor
Meisei	1.8	Thermistor +W helix
Daqiao	0.9	Thermistor
Vaisala	0.7	Capacitive wire
Meteolabor	1.8	Thermocouple wire

- With same type of sensor, correction values ranged from $0.6 \, {}^{\circ}\text{C} \sim 2.3 \, {}^{\circ}\text{C}$, it is too spread!
 - They are all calibrated at the ground level, but NOT in the upper air conditions.
- □ More reliable, SI-traceable and economic correction technique required, regardless of sounding time and location

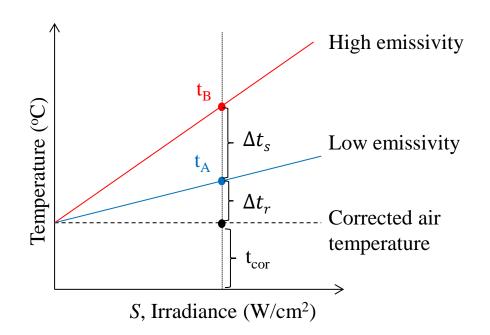
7


April 24, 2018

Potsdam, Germany

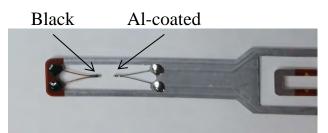
KRISS's new solar correction technique

Temperature difference of two radiosonde sensors with **different**


emissivity depends on the amounts of solar irradiation.

Potsdam, Germany

- $t_{Black} > t_{White}$
- $\Delta t(t_{Black} t_{White}) = f(S, T, P, v)$
 - •*S*: solar irradiance (W/m²)
 - •*T*: air temperature (°C)
 - •*P*: pressure (Pa)
 - •*v*: wind speed(ventilation) (m/s)


DTR (Dual Thermistor Radiosonde)

$$\Delta t_{s} = S \times f(T, P, v) \rightarrow S$$

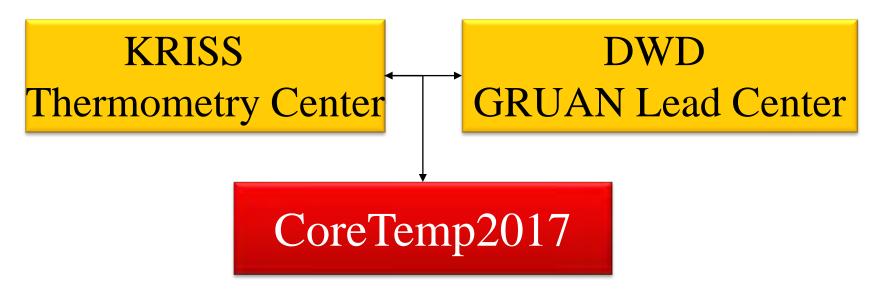
$$\downarrow$$

$$\Delta t_{cor} = S \times g(T, P, v) \rightarrow T_{cor}$$

- $t_B = \Delta t_s + \Delta t_r + t_{cor}$
- $t_{cor} = t_B \Delta t_r \Delta t_s$
- > t_B , Δt_s : Can be measured during flight
- > Δt_r : obtained by calibration

Related Articles

Meteorol. Appl. 23: 691–697 (2016) Meteorol. Appl. 25: 49–55 (2018) Meteorol. Appl. 25: 209–216 (2018) Meteorol. Appl. 25: 283–291 (2018) Patent FI 127041 B Patent KR 1742906 Patent KR 1787189 Patent US 15/306,697

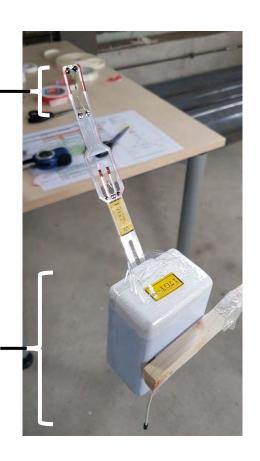

Real time *in-situ* **radiation correction technique**

Motivation of Intercomparison

- **To verify the DTR technique by comparison with other radiosondes**
- Study on the solar correction technique for more accurate upper-air temperature measurements

'Comparison of Radiation Effect on Temperature Sensors of Radiosondes 2017'

April 24, 2018 Potsdam, Germany



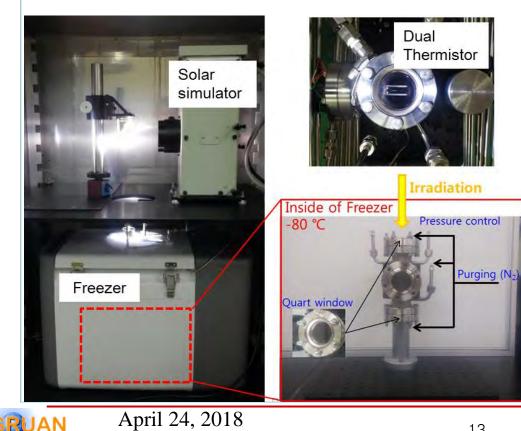
Preparation of DTR

Two thermistors <Black and Al-coated>

> RF module with styrofoam case and antennae

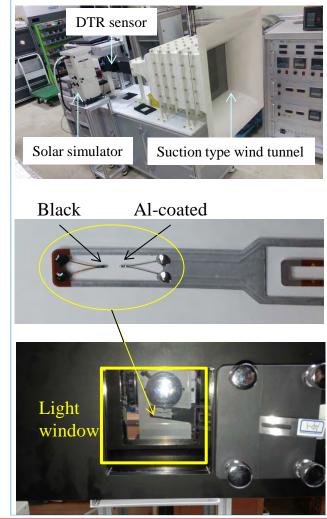
April 24, 2018 Potsdam, Germany

<Calibration of thermistor>



Resistance /

Calibration under solar irradiation


- Solar irradiation: $0 \sim 1500 \text{ W/m}^2$
- Wind speed: $0 \sim 10 \text{ m/s}$
- Temperature: $-80 \,^{\circ}\text{C} \sim 25 \,^{\circ}\text{C}$
- Pressure: 10 hPa ~ 1000 hPa

Test on the temperature and pressure effects

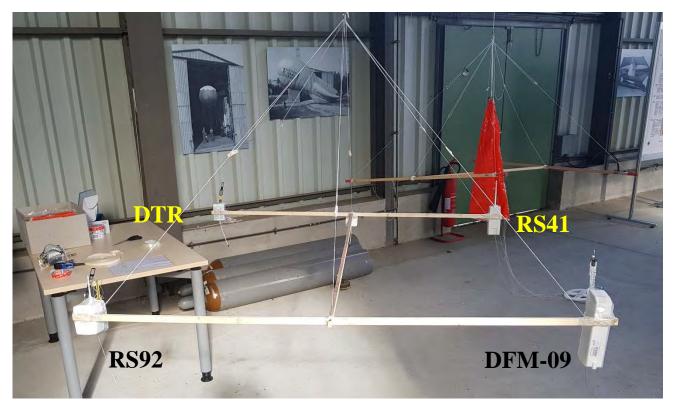
Potsdam, Germany

Test on the ventilation effects

Intercomparison sites and date

From 11 ~ 15, September 2017

At Lindenberg observatory, DWD



Flying rig and comparing radiosondes

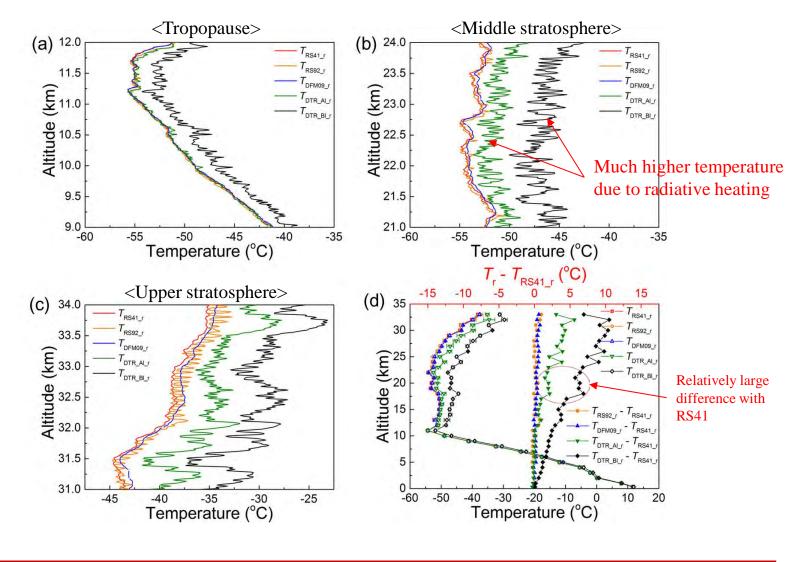
H-shaped rigs

Flight schedule

8 daytime, 2 nighttime flights

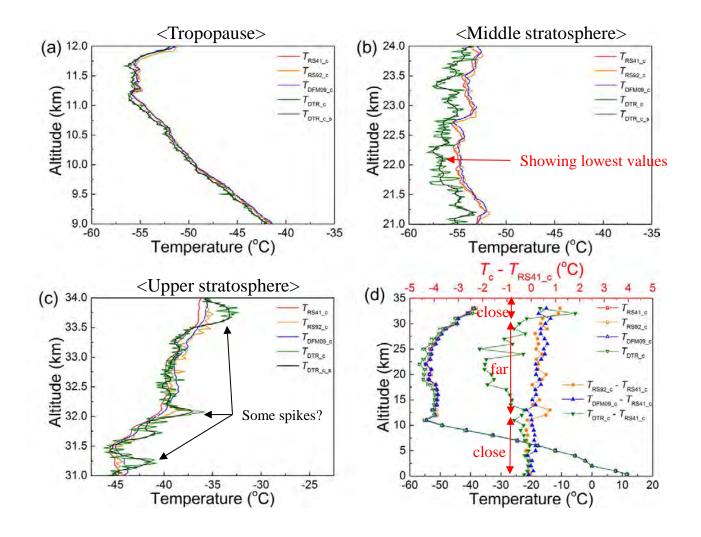
April 24, 2018 Potsdam, Germany

Flight	Date	UTC	Day/	Balloon Burst	Remarks
number	(Month Day)	(Hour:Min)	Night	(km)	
1	September 12th	07:54	Day	33.8	
2	September 12th	10:57	Day	34.4	
3	September 12th	13:56	Day	31.6	
4	September 12th	19:34	Night	35.1	
5	September 13th	07:50	Day	34.0	
6	September 13th	14:08	Day	34.5	DTR failed
7	September 13th	20:10	Night	33.2	DTR partially failed
8	September 14th	07:58	Day	33.7	DTR Horizontal
9	September 15th	07:50	Day	32.6	Two more RS41s
10	September 15th	07:50	Day	33.2	Radiometers only



Comparison results

Example of raw data in daytime (Flight 5)



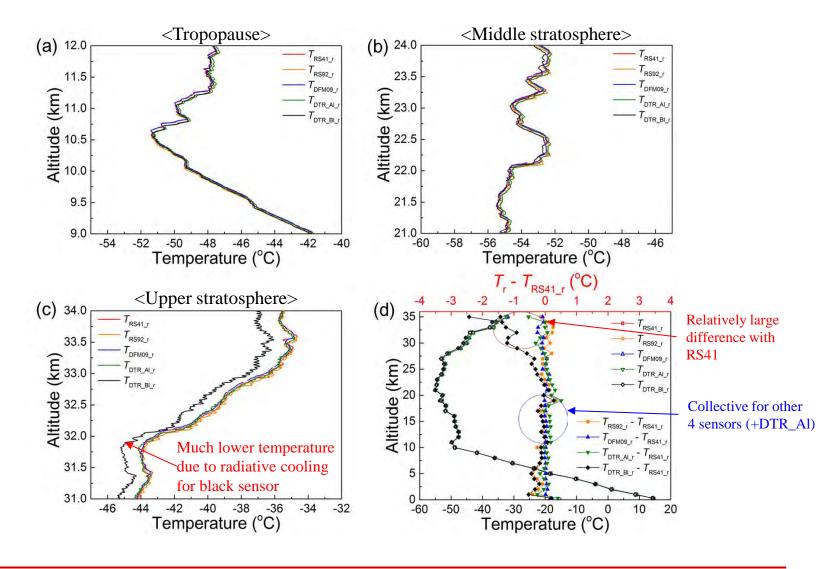
April 24, 2018

Potsdam, Germany

Corrected temperature in daytime (Flight 5)

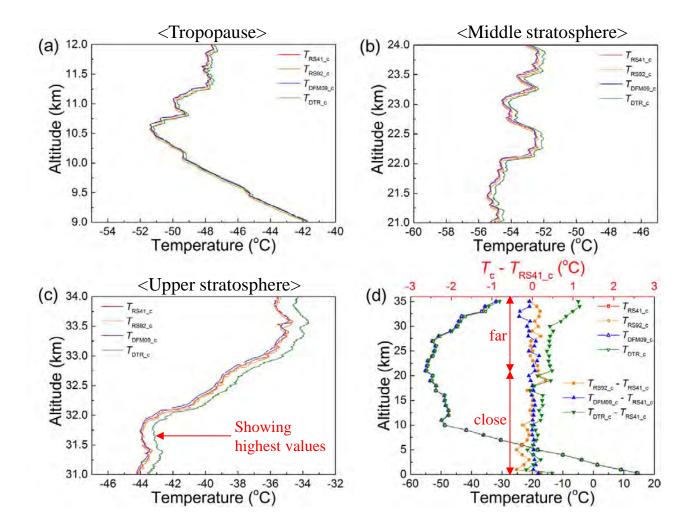
April 24, 2018 Potsdam, Germany

Averaged solar correction values in daytime



<Average of 5 flights in daytime>

- Collective behaviors of correction values for RS41, RS92 and DFM-09
 - Linear increase with altitude for all and Maximum of about 1 °C at 30 km
- $\square \qquad \text{Pretty large corrections for } T_{DTR_Al} \text{ and } T_{DTR_Bl}$
 - 5 °C for Al, 10 °C for black
- Difference of about -2 °C in maximum with RS41 at altitude of about 25 km
 - In troposphere, fairly in good agreement with others
 - At middle stratosphere, big differences with other radiosondes
 - At upper stratosphere, become closer to others
- **DTR** shows lowest corrected temperature at daytime.


Example of raw data in nighttime (Flight 4)

April 24, 2018 Potsdam, Germany

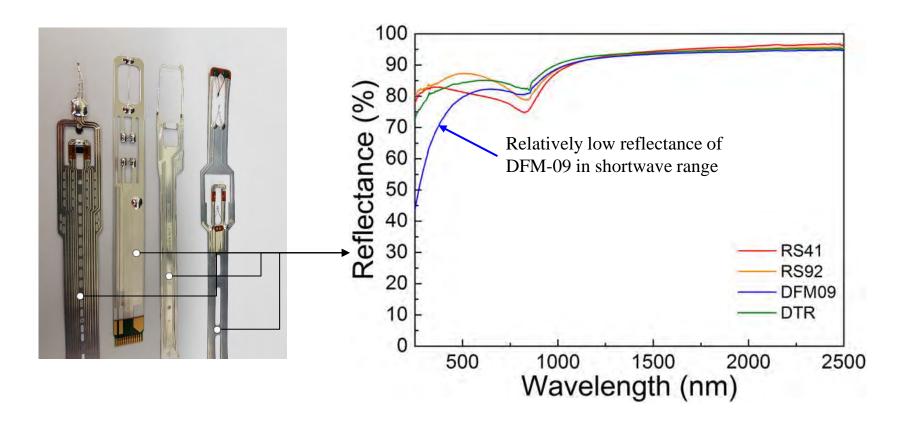
Corea Research

Corrected temperature in nighttime (Flight 4)

April 24, 2018

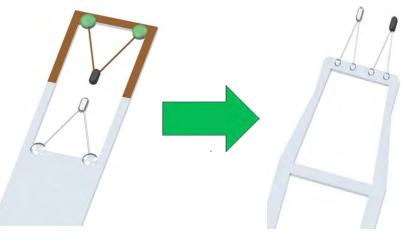
Potsdam, Germany

Averaged solar correction values in nighttime


- Same behaviors of correction values for RS41, RS92 and DFM-09
 - Zero corrections regardless of altitude
- $\square \qquad \text{Pretty large corrections for } T_{DTR_Al} \text{ and } T_{DTR_Bl}$
 - ◆ -1.7 °C for Al, -3.5 °C for black
 - Even raw data for T_{DTR_Al} is same to others, radiation correction done due to distinct Δt_s
- Difference of about 1.3 °C in maximum with RS41 at altitude of about 35 km
 - Up to middle stratosphere, not so much with other radiosondes
 - At upper stratosphere, difference becomes larger than others
- **DTR** shows highest corrected temperature at nighttime.



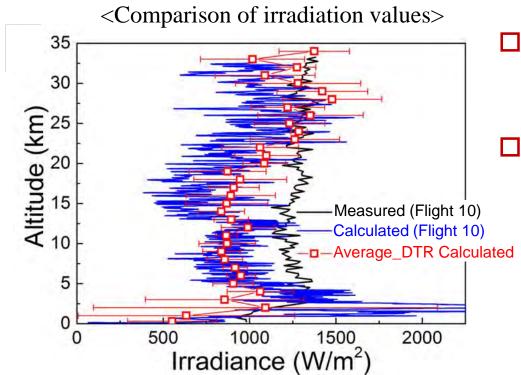
Reflectance tests on the sensor boom


 Reflectance (quality of coating) may be not the main reason of large solar effects of DTR_{Al}.

Imperfect design of DTR

April 24, 2018 Potsdam, Germany

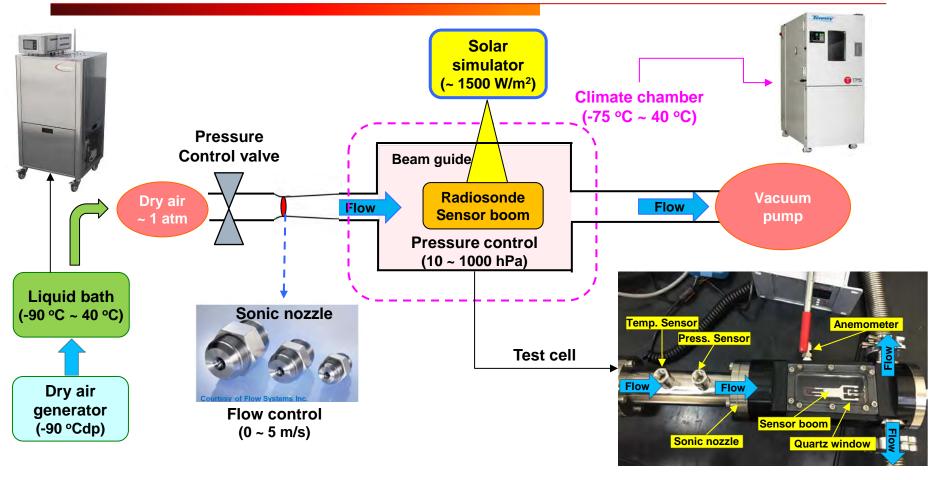
- Some part of sensor boom did not be Al-coated.
 - Not considered by just a mistake!
 - This part can take much more thermal energy giving rise to the much larger temperature change than others.
- Sensor boom design will be changed.



Before

After

Correction at daytime


- Comparison with measured and calculated irradiance
 - Some discrepancies between them
 - Calculation of irradiance by DTR
 - Based on the two individual experiments
 - Wind effect and Temperature/Pressure effect
 - It is not enough to explain the daytime behaviors of DTR
 - It is still under studies.

New design of Upper-Air Simulator under Construction

Design concept of New Upper-Air Simulator*

(Temperature, Pressure, Irradiance, Ventilation) Co-varying System $_{-75 \sim 40 \circ C}$ $_{10 \sim 1000 \text{ hPa}}$ $_{\sim 1500 \text{ W/m}^2}$ $_{0 \sim 5 \text{ m/s}}$ Co-varying System *Submitted to TECO2018

April 24, 2018

Potsdam, Germany

CoreTemp2017

- Comparison of DTR with RS41, RS92 and DFM-09 at Lindenberg observatory between KRISS and GRUAN Lead-Center
 - To test the solar radiation effects and to evaluate the DTR technology.
- □ Total 10 flights at day and nighttime.
 - At day time, DTR shows higher raw temperatures and larger correction values than others.
 - DTR shows lowest corrected air temperature at daytime.
 - At night, lower temperatures due to radiation cooling were observed.
 - DTR shows highest corrected air temperature at nighttime.
 - Solar heating and radiation cooling of DTR were varied with the altitude, depending on temperature and pressure.
- □ Imperfection of DTR design resulting from coating and shape
 - **Sensor boom design** will be changed to minimize the conduction error through a stem.
- □ Making an idea on the more realistic **upper-air simulator**
 - Temperature, pressure, irradiation and ventilation can be controlled separately.
- □ More improved results are expected in next version of DTR, 2018.

Thank you for your attention

Y