Intercomparison of Vaisala RS92 and RS41 sondes under controlled laboratory conditions

M.Rosoldi¹, G. Coppa², C. Musacchio², A. Merlone² and F. Madonna¹
¹ Istituto di Metodologie per l’Analisi Ambientale, Consiglio Nazionale delle Ricerche (CNR-IMAA)
² Istituto Nazionale di Ricerca Metrologica (INRiM)
marco.rosoldi@imaa.cnr.it , g.coppa@inrim.it
The Vaisala RS92-SGP radiosonde widely used at the global scale for profiling of standard meteorological variables in troposphere and stratosphere.

In the fall of 2013, the Vaisala RS41 radiosonde was introduced as a replacement of the RS92 radiosonde, with the aim to improve the measurement accuracy of profiles of atmospheric temperature and humidity.

To ensure the homogeneity and the highest quality standard of radiosounding time series to reliably detect climate changes, **intercomparison studies are needed to characterize the relevant differences between RS92 and RS41 in terms of biases, uncertainties and calibration**.

Typically, intercomparisons of RS92 and RS41 are performed by dual radiosoundings.
Objectives

✓ Provide a further contribution to dual radiosoundings for the proper management of the transition from RS92 to RS41

✓ Investigate the differences between RS92 and RS41 sensors (in terms of sensitivity, stability and response time) at different T, RH, p and wind speed conditions controlled inside climatic chambers and similar to those measured in the real atmosphere

✓ Assess the measurement accuracy of the two sonde types, using reference humidity and temperature sensors
1° step: simultaneous T, RH measurements from the two sonde types inside the climatic chamber Kambic KK-105 CHLT, which simultaneously and independently controls RH and T inside. Reference T, RH sensors have been placed in the measurement region close to the sonde sensors.

2° step: simultaneous T measurements from the two sonde types at their fast transitions between two climatic chambers set to different T, in order to study the response time of sonde T sensors.

3° step: simultaneous T, RH measurements from the two sonde types inside the climatic chamber with wind generation EDDIE (Earth Dynamics Direct Investigation Experiment), which simultaneously and independently controls T, p and wind speed inside.
1° step: Climatic chamber Kambic

Kambic KK-105 CHLT

- T control in the range: -40°C...180°C
- T stability over time: ±0.1°C
- T uniformity: ±0.3°C
- RH control in the range: 10%...98% only for T in the range: 10°C...95°C
- RH stability over time: ±0.5%
1° step: Measurement setup

RS92 sensors
RS41 sensors
1° step: Measurement setup

RS41
RS92
RS92 ref T
Middle ref T
RS41 ref T

GRUAN ICM-10, Potsdam, Germany, 23-27 April 2018
1° step: Measurements

Kambic points

- 20 (RH, T) points, with RH = 20%, 40%, 60%, 80%, 98% and T=10°C, 20°C, 30°C, 40°C
- 5 T points, with T= 0°C, -10°C, -20°C, -30°C, -40°C (no RH control)

Acquisition

Time: during the stability conditions of chamber (minimum T, RH variations in the chamber control sensors or reference sensors)

Duration: from 5 to 10 min

Time resolution: 1 s (time resolution of raw data of Vaisala system)
Time resolution references: 3 s (lower resolution of Super-DAQ acquisition system)
1° step: Measurement results

Kambic (RH=20%, T=20°C)

Kambic stability: < 0.035°C
Kambic uniformity: < 0.08°C

RS41 stability: 0.13°C
RS92 stability: 0.5 °C

RS41~ 4 times more stable than RS92

ΔT_{max} (RS41, RS92): 0.3°C

ΔT_{max} (RS41, ref_therm): 0.13°C
ΔT_{max} (RS92, ref_therm): 0.34°C

RS41~ 3 times more accurate than RS92

GRUAN ICM-10, Potsdam, Germany, 23-27 April 2018
1° step: Measurement results

Chamber (RH=20%, T=20°C)

Vaisala Ground Check:
- $\Delta RH_{RS92} = -0.6\%$
- $\Delta RH_{RS41} = 0.3\%$

increase of difference with respect to the ref hygrometer for both sondes, making measurement accuracy worse

Kambic stability: < 0.4%

RS41 stability: 0.5%
RS92 stability: 3%

RS41~ 6 times more stable than RS92

$\Delta RH_{\text{max}} (RS41,RS92): 3.7\%$

$\Delta RH_{\text{max}} (RS41, \text{ref_hygro}): 1\%$

$\Delta RH_{\text{max}} (RS92, \text{ref_hygro}): 3\%$

RS41~ 3 times more accurate than RS92
2° step: Twin chambers

Performed a series of fast temperature transitions:

- -40 °C -> 20 °C -> -30 °C
- Repeated -30 °C -> 30 -> -30 °C
- Repeated 0 °C -> 20 °C -> 0 °C

Sondes moved very quickly between climatic chambers, set at different temperatures.

Stabilities of initial and final temperature not so important for the determination of time constant.
2° step: Measurement results

Example of 30 °C / -30 °C transition

Very fast temporal response by the sondes (both ~ 30 s)

But

Noise and DT is different after the transition!

(something to assess and to take into account)
3° step: Wind-pressure tunnel

Performed a series of fixed temperature/wind/pressure measurements using:

Earth Direct Dynamics Investigation Experiment
Performed a series of fixed Temperature – Wind – Pressure measurements using:

- 30 °C (2 m/s, 8 m/s, 15 m/s) atmospheric pressure
- 15 °C (2 m/s, 8 m/s, 15 m/s) atmospheric pressure
- 0 °C (2 m/s, 8 m/s, 15 m/s) atmospheric pressure
- -10 °C (2 m/s, 8 m/s, 15 m/s) atmospheric pressure
- -20 °C (5 m/s, 15 m/s) * @ (800 hPa, 500 hPa and 350 hPa)

* (nominal value)
3° step: Measurement results

Some examples:

Noise *seems* to increase with altitude

-20 °C / 10 m/s / 800 hPa
3° step: Measurement results

Some examples:

Reaction to a change in wind speed

-20 °C / 15 m/s / 500 hPa
3° step: Measurement results

Some examples:

Info on the influence of pressure

![Graph showing temperature and pressure data over time with a temperature of -20 °C, wind speed of 10 m/s, and pressure of 350 hPa.](image)
New tool available!

Earth Dynamics Investigation Experiment

Designed to go much beyond 350 hPa -> few hPa reachable
Thanks for your attention!