

Status of the RS41 data processing

Ruud Dirksen GRUAN Lead Centre, DWD

10th GRUAN Implementation and Coordination Meeting (ICM-10)
Potsdam, Germany
April 2018

Current status of RS41 processing

- RS41 data processor in principle working
 - Overall processing system (environment for dynamic modules) → operational
 - Majority of the processing modules → technically functioning
 - Preliminary processing is possible (individual soundings for functional testing)
- Still to be done (ongoing work)
 - Step-by-step evaluation of existing modules (code review) of content and uncertainty estimates → very important
 - Laboratory tests & module definition for radiation correction for temperature
 - Documenting the processing steps

Processing system

Pre-processing

Data import & mapping

Processing & quality control

Quality assessment

Data export

- Create a standardised raw data file
- Create a standardised meta-data file
- Initialise the data processor use of a configuration

- Import raw data files
- Import metadata file
- Map data variables
- Combine & grid data variables

- Modular processing
- Store intermediary results
- Store final results
- Store quality flags

- Assess all available quality information, like
- ranges & distribution of data
- uncertainties
- quality & processing flags

- Create a standardised data product file
- Create a quality control & quality assessment report
- Create a processing log

Completed

Completed

In evaluation

Draft

In development

Processing modules

General & ground check

Pressure & altitude

Ventilation & wind

Temperature

Humidity

Make time axis steady

Calculate position (XYZ → LLA)

Pendulum analysis

Estimate radiation

Quality control of raw humidity

Combine & grid data sources

Pressure calibration

Calculate ventilation

Radiation correction

Re-calculate raw humidity

Detect launch points

Comp. pressure & altitude (p + GPS)

Calculate wind speed & direction

Remove spikes

? Radiation ?

Detect & analyse SHC / shelter

Smoothing

Smoothing

Smoothing

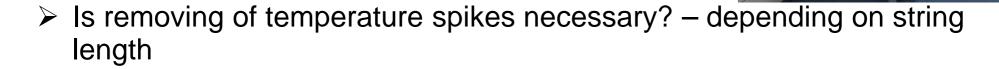
Time-lag correction

Quality control of all GC

Quality control of pressure & alt.

Quality control of wind

Quality control of temperature


Quality control of humidity

Module development for RS41

- Module which requires most effort: Radiation correction for T-measurements
 - Design and construction of a new setup for measurements
 T-error by radiation (testing phase)
 - Collection of experimental data (start spring/summer 2018)
 - Parameterization of measured T-error with radiation, press (modification of existing approach)
 - Model to relate experimental results to effects during sound

- ➤ To be evaluated: Is a radiation correction (dry bias) for humidity sensor of RS41 required?
 - U-sensor equipped with additional T-sensor for correct temperature of U-sensor
 - correct U-estimate of ambient air depends on correct measurement (radiation correction) of "normal" T-sensor

Contents of GDP files

- Processing outputs that are to be included in GDP (generic for all radiosonde products)
 - Calculated product variables with associated uncertainties
 - O Add → Raw data, corrections
 - O Add → Intermediate elements of uncertainty budget and correction steps
 - Add → Additional metadata, e.g. information on ground check, setup, ...
 - O Add → Extracts from QC/QA, e.g. flags, assessments, diagnostic (next slide)
- > Find compromise between scope and benefit
- Input from GRUAN community needed!

Quality assessment

	Pressure / Alt.	Wind	Temperature	Humidity
Ground check	Large GC correction	OK	OK	ОК
	ОК	OK	OK	Large difference in SHC
Troposphere	OK	GPS failure for 2 kilometers	Contamination detected (2 – 4 km)	OK
	ОК	OK	OK	Large uncertainties in TP region
Stratosphere	ОК	OK	OK	Values not in range (< 0.0 %)
	Large uncertainties above 27 km	ОК	Large uncertainties above 33.5 km	More than 100 % relative uncertainty
Assessment summary	?	?	?	?
	GRUAN stamp?			

Quality assessment

- Generic definition for all radiosondes
 - Postprocessing @LC for data products which are processed externally
- > Definition of quality assessment components
 - separate task / action item to be assigned to a selected group of persons (from LC, TT-RS, external, ...)
- Part of radiosonde technical document (GRUAN-TD-2)

Product documentation

Documentation at several levels

- Processing system → how it works and how it can be configured
- Processing modules → what is calculated
- At general level → structure of processing, physical background, ...

GDP publications

- Peer-reviewed paper (?)
- RS41 specific technical document (appendix to radiosonde omnibus document)

Time schedule

- ➤ How much time should/can the Lead Centre use to develop and document the RS41-GDP.1 ?
 - Consequence → Other tasks can not be done and are delayed
- Required steps/tasks:
 - Laboratory experiments to establish radiation effect of temperature sensor
 usage of new radiation chamber/tunnel
 - Optimize radiation correction module (transfer function: lab → atmosphere)
 - Evaluate all processing modules
 - Extend and optimize GDP file content
- Time schedule/work load
 - First operational BETA version → ~6 month of work
 - First operational RELEASE version → ~6 month of work in addition
 - \circ Full documentation \rightarrow >12 month of work in addition (TD and paper)

