GCOS

f’:\ ~ Reference
; | Upper-
]
\‘@-—5}’ Air
Network
GRUAN Technical Note 6

Brief Description of GruanToolRsLaunch
(gtRsl)

Michael Sommer

Publisher Number & Version
GRUAN Lead Centre GRUAN-TN-6
Rev. 1.0 (2020-08-24)

Sommer GRUAN-TN-6 Rev. 1.0 (2020-08-24)

Document info

Title: Brief Description of GruanToolRsLaunch
: T_-\ . (gtRsl)
|‘\£# Topic: Software Manual

Authors: Michael Sommer

Publisher: GRUAN Lead Centre, DWD

Document type: Technical Note

Document number: GRUAN-TN-6
Page count: 36
Version: Rev. 1.0 (2020-08-24)

Abstract

The GRUAN software tool g7Rsl is a Java-based command-line utility intended for automatic
creation of GMD (GRUAN meta data) files for radiosonde launches (“RsLaunch”). The GMD
files are mandatory to import any radiosonde launches into the GRUAN data archive. The
gtRsl is a useful alternative to the manually operated and GUI-guided GruanRsLaunchClient
(RLC) in following cases: Routine flights with a single radiosonde, stable launch setup with
few operational changes over time, or auto-launcher systems. The current version of this brief
description is related to version 0.5.x of gzRsl.

Contacting the GRUAN Lead Centre

Note: Please consult the GRUAN Lead Centre before use of this tool: gruan.lc@dwd.de.

Note: Please contact the author or the GRUAN Lead Centre (gruan.lc@dwd.de) in case
file formats are not supported, functionalities are missed, or if bugs or errors occur.

Editor remarks

Note: Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not constitute or imply its endorse-
ment by GRUAN.

3/36

mailto:gruan.lc@dwd.de
mailto:gruan.lc@dwd.de

Sommer GRUAN-TN-6 Rev. 1.0 (2020-08-24)

Revision history

Version Author / Editor Description

1.0 Michael Sommer First published version as GRUAN-TN-6
(2020-08-24)

0.9.2 DRAFT Michael Sommer Corrections and added descriptions as answer
(2020-08-21) of the LC-internal review

0.9.1 DRAFT Christoph von Rohden | LC-internal review
(2020-08-12)

0.9.0 DRAFT Michael Sommer Final preparations for the review

(2020-07-03)

0.5.3 DRAFT Michael Sommer Small corrections included

(2020-04-29)

0.5.2 DRAFT Michael Sommer New appendix “Evaluation formulas” added
(2019-10-29)

0.5.1 DRAFT Michael Sommer Small corrections included

(2019-10-25)

0.5.0 DRAFT Michael Sommer First version which is related to v0.5.x of gtRs!
(2019-04-23)

0.4.1 DRAFT Michael Sommer Small corrections included

(2019-03-29)

0.4.0 DRAFT Michael Sommer First draft version as GRUAN-TN-x using
(2019-03-27) ETEX

0.3.41 DRAFT Michael Sommer Draft version as GRUAN-IN-6

(2017-12-12)

4/36

Sommer

GRUAN-TN-6

Rev. 1.0 (2020-08-24)

Table of contents

1 Installation 7

1.1 System requirements for running GruanToolRsLaunch 7

1.2 Download and install Javao oo 7

1.3 Download GruanToolRsLaunch 7

1.4 Installing GruanToolRsLaunch 7

2 General usage 7

3 Command options 9

3.1 Option -, —-TUN e e e e e 9

3.2 Option -t, --template <FILE> 9

3.3 Option -g, --change-list <FILE> 10

33.1 Comments 10

3.3.2 Timestamps of changeevents 11

3.3.3 Definitions of data filetypes 12

3.3.4 Processable sounding file types L. 13

3.3.5 Special values inchangefiles 13

3.4 Schedulingoptions 15

3.5 Blockingoffiles. 15

3.6 Detectdoublefiles 16

3.7 Create, copy, delete,and movefiles 16

3.8 FTPuploadingoptions e 17

3.9 General options Lo e e 18

4 Examples 18

4.1 Example 1 —useofatimerange 18

4.2 Example 2 —use of startdateonly 19

4.3 Example 3 — use of automatic time range detection 19

44 Example 4 —useof datafileblocking 19

4.5 Example 5—useof FTPupload. 19
Appendix

A List of options 21

B Example template files 22

B.1 Template file for a routine launch with auto-launcher 22

B.2 Template file for a manual ozone sounding, 23

C Example change-list files 25

C.1 Example change-list file from a site with few changes overtime 25

D Evaluation formulas 27

D.1 Generalusage e 27

D.2 Operators e e e e e 28

Sommer GRUAN-TN-6 Rev. 1.0 (2020-08-24)

D.3 String functions 28
D.4 Mathfunctions L L 29
D.5 Additional GRUAN functions 31
D.5.1 Scalarfunctions L Lo 31

D.5.2 Arrayfunctions 32

E History of development of gtRs/ 32
E.1 Historyof Version0.5.x 33
E.2 Historyof Version0.4.x e 33
E.3 Historyof Version0.3.x 33
E.4 History of Version 0.2.X 34
Acronyms 36

6/36

Sommer GRUAN-TN-6 Rev. 1.0 (2020-08-24)

1 Installation

1.1 System requirements for running GruanToolRsLaunch

For using the GruanToolRsLaunch (gtRsl) following requirements should be satisfied:

* computer with any operating system (like Windows, Linux, Mac OS, ...),
* installed Java version 8 (newer versions are not yet tested).

1.2 Download and install Java

An actual Java Runtime Environment (JRE) should run under the used operating system. In
case the JRE version is outdated or not installed you can download the current version from:

* Oracle: www.java.com/en/download (last free update from January 2019), or
* AdoptOpenJDK: adoptopenjdk.net (security updates until at least September 2023)

and install on your operating system.

1.3 Download GruanToolRsLaunch

The current version of gtRsl is available at the GRUAN website (www.gruan.org/data/software/
gtrsl). A user login is required for download. Please register at www.gruan.org/user/registration,
if required.

1.4 Installing GruanToolRsLaunch

The few installation files are packed in a zip-file. The main program file is a Java executable
archive file (“.jar”). Other files (“gtRsl.*”) are launching scripts for different operating systems,
like “gtRsl.bat” for Windows.

Unpack all files into a folder of your choice. The program (or the folder) should then manually
be announced to the system. There are two options:

» Edit the PATH system variable and add the directory of installation.

* Edit the dedicated script and correct the (absolute) path to the “*.jar”-file, than copy this
script into a folder that is known to the system for executable programs (e.g. a “/bin”
folder).

2 General usage

The usage is as usual for command line tools. The program is controlled in detail by a number
of available options, some of which are mandatory.

| | gtRsl [OPTION]... [FILE]... \

7136

https://www.java.com/en/download
https://adoptopenjdk.net
https://www.gruan.org/data/software/gtrsl
https://www.gruan.org/data/software/gtrsl
https://www.gruan.org/user/registration

Sommer GRUAN-TN-6 Rev. 1.0 (2020-08-24)

As usual with command line programs, any number of options can be specified after the com-
mand in any order. The complete list of all available options is available in the appendix A.
More detailed explanations of each option can be found in Section 3.

There are three “main’ options, one of which must be selected:

* -ror --run — run the tool for a list of files and/or directories
* -h or --help — print the help page with a short description of all options

* -y or --version — print information about the software version

Therefore, for normal use of this tool, the -r or --run option must always be specified (see
Section 3.1). It is generally equivalent whether the short or long form of an option is used.
In addition to the main options, there is a number of further options that can optionally be
specified to adapt the operation of the actual command. However, if the -r option is selected,
two additional options -¢ and -g are mandatory. With -¢ a template file is assigned, which is a
template for the GRUAN meta data files to be generated (see Section 3.2). The option -g is used
to assign a file which defines general meta data as well as documented changes of these meta
data over time (see Section 3.3).

Following the options, at least one source file or directory must be specified. Instead of a single
file/directory a space-separated sequence of files and/or directories can be passed to the actual
command. The complete list of these files (or, if a directory is given, all files in this directory)
is then processed.

To give an idea of how to use the tool, a simple example is shown and discussed here:

I ‘ gtRsl -r -t "test-template.ftl" -g "test-changes.txt" -u -o "upload" "test-data" ‘

The gtRsl command is followed by an unordered sequence of options, with some working as
switches (without passing values), such as -r, and others used to define names, values, or other
keywords, such as -t “temp-template.ftl”.

The first option in the example -r switches the program into normal processing mode. This
requires two more mandatory options. With -¢ “fest-template.ftl” the template file to be used
is assigned, and -g “test-changes.txt” transfers the desired list of meta data including possible
temporal changes. The next option -u allows the program to independently determine the time
range covered by the soundings selected for processing (see Section 3.4).

The last option -0 “upload” defines a path to a directory where the created GRUAN meta data
(GMD) files are to be stored. If the target directory is not given with an absolute path, then it
is treated as relative to the working directory. The specification of the file or directory which
contains the original sounding files (see Section 3.7) is given with the very last parameter (“‘test-
data” in the example).

Note that before executing the command, the template file (see Section 3.2) as well as the file
containing the list of metadata (Section 3.3) have to be properly adapted or created.

Note: The creation of the template and metadata list files should be done in consultation
with the GRUAN Lead Centre (gruan.lc@dwd.de).

In addition to this first example some more examples can be found in Section 4.

8/36

mailto:gruan.lc@dwd.de

Sommer GRUAN-TN-6 Rev. 1.0 (2020-08-24)

3 Command options

3.1 Option -r, --run

The option -7 is the key option for a normal processing of the input file, i.e. it is mandatory for
the creation of GMD (GRUAN meta data) files. When using this option, two further options are
required: -¢ (Section 3.2), and -g (Section 3.3).

But how does the processing of input data work? In a first step, all directories and files to be
used as input are analysed. The processing of a number of different file formats is currently
built-in (see Section 3.3.4). An attempt is made to extract a number of metadata, e.g. start date,
radiosonde serial number, etc. Files to be excluded from processing can be filtered out (blocked,
see Section 3.5). Afterwards a time grid is created according to the defined scheduling (see
Section 3.4) and the time steps are run through one after the other. This procedure checks for
input files matching a time step. If matching input files are found, the appropriate GMD file is
created and saved. Depending on the selected options, the GMD files are stored together with
the input data in a structured way (see Section 3.7) and optionally uploaded to the GRUAN LC
(see Section 3.8).

3.2 Option -t, --template <FILE>

The template option is required for a run, because a template file is necessary to create the GMD
files.

Note: Please contact the GRUAN Lead Centre (gruan.lc@dwd.de) for assistance in
adapting or creating a template file.

The appointed template file must be a valid FTL file. The full definition of FTL files is not given
here, but some key properties and examples. FTL files should be based on GMD files. There
are some example FTL files in the sub-directory “/templates”. A FTL file can include specific
(or user-defined) place holders. These place holders are used to ensure that the appropriate
metadata can later be written in the right places in the GMD files to be generated. A place
holder has the following syntax:

1 ‘ ${place_holder_name} ‘

There are some pre-defined place holders which are automatically filled with valid values, ac-
cording to the following list:

* creation_timestamp — date and time of processing

* creation_comment — short comment for automatic creation

 sonde_sn — serial number of primary sonde (only available, if it can be extracted automat-
ically)

e launch_number — number of launch of a schedule date [default: 1]. If a double launch is
detected, the second launch is assigned the launch number 2.

In addition to the rather simple pre-defined place holders, there are some constructs for manag-
ing data file lists.

91/36

mailto:gruan.lc@dwd.de

Sommer GRUAN-TN-6 Rev. 1.0 (2020-08-24)

The following syntax can be used in the template file for including optional text in the result
GMD file. The variable required_data is true, if all required data files exist exactly once (see
also Section 3.3.3 to get an idea about required or optional data files).

1‘ <#if !required_data> ... text to include ... </#if>

The following syntax can be used for including a list of data files. The text lines in this construct
will be included n times (with n the number of data files).
| | <#list data_files as file> |

2‘ ... text to include ... ‘
<#/list> ‘

.
S

Several place holders are pre-defined for use in the file list block:

* file.fileName — name of data file (with extension), e.g. “data_file.tab”
* file.filePath — local absolute path of data file

* file.fileLength — length of data file [byte]

* file.fileChecksum — checksum of data file [CRC32]

Note: Please find example template files in Appendix B.

3.3 Option -g, --change-list <FILE>

The change-list option is required for a run, because a change-list file is necessary to create the
GMD files. Such a file contains all relevant general meta-data (related to the site, instruments,
equipment, etc.) and furthermore allows to define change events of these meta-data over time.

Note: Please contact the GRUAN Lead Centre (gruan.lc @dwd.de) if first time a new or
adapted change-list file should be created.

A change-list file should follow a specific format. Each line with a change definition should
consist of three parts:

1‘ <key>;<timestamp>;<value> ‘

The three parts are separated by a semicolon ““;”. They have to follow the scheme:

* key — unique key of a pre-defined or user-defined place holder
* timestamp — start date&time from which the given value applies

* value — value to be used (number or string)

Note: Example change-list files can be found in appendix B.

3.3.1 Comments

It is possible or even desired to include comment lines for additional information. Comment
lines have to start with a hash mark “#”, e.g.

10/ 36

mailto:gruan.lc@dwd.de

Sommer GRUAN-TN-6 Rev. 1.0 (2020-08-24)

1| # —————

2 | # Balloon type and filling

3| # ——

4 | #

5| # TODO Please add here additional lines to display any change
6 | # (always ’balloon_type’ and ’balloon_filling’)

7| # like above.

8 | #

9| # ——m—mmm o

3.3.2 Timestamps of change events

According to the number of changes of a sounding parameter or setting over time, each place
holder can be redefined as often as required, e.g. balloon_type and balloon_filling:

1| # set default balloon type and filling
2 | balloon_type; ; TA350

3 | balloon_filling; ;1100
4

5| # change to TX600 on 2013-01-04 12UTC
6 | balloon_type;2013-01-04T12;TX600
7 | balloon_filling;2013-01-04T12;1250

9 | # change to TA350 on 2013-04-24 OOUTC
10 | balloon_type;2013-04-24T00; TA350
11 | balloon_filling;2013-04-24T12;1100

13 | # change to TX600 on 2013-11-15 OOUTC
14 | balloon_type;2013-11-15T00; TX600
15 | balloon_£filling;2013-11-15T00; 1250

17 | # change to TX800 on 2013-11-30 12UTC
18 | balloon_type;2013-11-30T12;TX800
19 | balloon_filling;2013-11-30T12;1600

This example shows that the balloon type is TA350 before 2013-01-04T12, then changing to
TX600, back to TA350, TX600, and finally to TX800 on 2013-11-30T12.

The timestamp should be given in ISO 8601 format. It is possible to give abbreviated versions.
If so, the time stamp is automatically completed with default values according to the scheme
“xxxx-01-01T00:00:00.000Z.

|| 2013-11-30T12:00:00.000Z |
2 | 2013-11-30T12:00 |
3 2013-11-30T12 |

The specification of a timestamp is optional. If no timestamp is given, the defined value applies
to the entire period (from the beginning).

1‘ balloon_type; ; TA350 ‘
> | balloon_filling; ;1100 |

11/36

Sommer GRUAN-TN-6 Rev. 1.0 (2020-08-24)

3.3.3 Definitions of data file types

The definition of relevant data file types is a bit more complex, see e.g. the following section of
a change file:

e
2 | # Definitions of data file types

3| # —mmmmm e
4| # e.g. LITAutol1_20110101_113008.dc3db

s|# 1) Tenerife_20080101_111504.dc3db

6| # 2) Tenerife_20080101_111504_Add.dc3db
7| file_types; ;DC3DB|DC3DB-ADD

3 | file_codes; ;F01|F02

10 file_date_formats;;yyyyMMdd’_’Hhmmss|yyyyMMdd’ _’Hhmmss
11 | file_date_starts;;919

12 | file_required; ;truel|false

13 | file_sv_use;;false|false

14 | file_ignore_pe;;false|false

Note: Please contact the GRUAN Lead Centre (gruan.lc @dwd.de) for assistance in cre-
ating or adapting data file type sections for the first time.

It is mandatory to define at least one file type, multiple files at once is possible. The definitions
should be separated by a vertical line ““|”.

The following keys are required to define file types in a change-file:

* file_types — a unique key of a known file type (see section 3.3.4)

* file_codes — a unique key, e.g. FO1, FO2, ...

* file_masks — a file mask to identify files, e.g. “*.dc3db”

* file_date_formats — a date format to extract date and time of launch from the file name
* file_date_starts — an index indicating the beginning of the date string

* file_required — boolean value (true/false) if a file is required or not

* file_sv_use —boolean value (true/false) to activate extracting additional special values from
files (see section 3.3.5)

* file_ignore_pe — boolean value (true/false): Should parsing errors be ignored for this file
type?
Following information will be extracted from each file:
* launch_date — [required] full time stamp of launch
* sonde_sn — [required] serial number of main sonde
* list of special values — [optional] a pre-defined list of additional special values, e.g. bal-

loon type, sonde type, frequency, operator, ... (see section 3.3.5).

In the actual grRs! version, changes of file types over time is not implemented yet. That is, only
one file type section can be defined in a change-file, and timestamps for “file_” keys will be

12736

mailto:gruan.lc@dwd.de

Sommer GRUAN-TN-6 Rev. 1.0 (2020-08-24)

ignored when given. As a work-around, a new change-list file must be created in case file type
changes are to be defined.

3.3.4 Processable sounding file types

Sounding files are in most cases raw data files with a specific format. To account for this,
corresponding specific reader modules for a number of file types were developed and integrated
to enable the gzRsl tool to process the different file types equivalently. The following file types
can be processed by the actual version of gtRsl:
* MWX — Vaisala radiosonde archive file of the MW41 system
DC3DB — Vaisala DigiCoralll radiosonde archive file
DC3DB-ADD - very similar to DC3DB
IGNC-RAW — French IPSL GRUAN NetCDF file of radiosonde raw data (L1A)
GSFZ — Graw Sounding File (packed)
ARM-PTU — ARM radiosonde PTU file
* ARM-RAW — ARM radiosonde RAW file
* ARM-PARSED — ARM radiosonde parsed file.

Note: In case of the need for additional file types, please contact the author or the
GRUAN Lead Centre (gruan.lc@dwd.de). Other file types can be integrated on request if
they are used operationally on at least one GRUAN site.

3.3.5 Special values in change files

Often many additional or sonde-specific meta-data are stored in the manufacturer data files. The
usage of the tool’s “specific values” functionality gives access to this information.

The following keys can be defined in a change file if “specific values” are to be used:

* file_sv_<file_code> _names — list of names of “specific values” to be extracted from the
file

* file_sv_<file_code>_<sv_name> target — target name (place holder) for use in the tem-
plate file

* file_sv_<file_code>_<sv_name>_default — default value to be assigned in case the value
of a “specific” variable cannot be extracted from the file.

In the change file it should look like this:

1 | # define files
> | file_types; ;MWX|DC3DB|TXT
3| file_codes; ;FO1|F02|F03

5| # define specific values
6 | file_sv_use; ;truel|truel|false
7 | file_sv_FO1_names;;SondeFamily,SpecialSensor

13736

mailto:gruan.lc@dwd.de

Sommer GRUAN-TN-6 Rev. 1.0 (2020-08-24)

8 | file_sv_FO1_SondeFamily_target;;sonde_family

9 | file_sv_FO1_SondeFamily_default; ; 0-UNKNOWN-SONDE
10 | file_sv_FO1_SpecialSensor_target;;with_ozone

11| file_sv_FO1_SpecialSensor_default; ;0

12 | file_sv_F02_names; ;comment

13 | file_sv_FO02_comment_target;;operator

14 | file_sv_F02_comment_default; ; TS1-DUMMY

It is possible to define special values for each data file type. To do so a specific file “<special
FileType name>Specific Values.properties” can be stored in the folder “config” (e.g. “MwxFile-
SpecificValues.properties”). Such properties files must start with the following lines:

I ‘# Specific values of MWX meta-data

2‘ type=java.util.Map ‘
3‘ converter=org.osjava.sj.loader.convert.MapConverter

4 |

Here you can define all specific values (additional meta-data).

The definition of a “specific value” can be done with one or two lines. A line defining the
mapping (or renaming) from a meta-data key to the name of the specific value is essential. In
addition an optional evaluation formula can be applied to change, filter, or calculate the final
result:

* sv.<Name>.def — Main definition line to map (rename) a meta-data key to a specific
value name,

* sv.<Name>.jeval — Optional line to define an evaluation formula (see appendix D).

Following example shows the definition of two “specific values” (one with and one without
usage of an evaluation formula):

5 | # SondeFamily

6 | # * RS92, RS41

7 | sv.SondeFamily.def=Radiosondes.SondeFamily
8 | # sv.SondeFamily. jeval=

10 | # SpecialSensor

11 | # * Special sensor type: O = None, 1 = Generic, 2 = 0Ozone

12 | sv.3pecialSensor.def=Soundings.SpecialSensorType

13 | sv.SpecialSensorType.jeval=S:ifs(\#{value} == 0, ’None’, ifs(\#{value} ==
1, ’Generic’, ifs(\#{value} == 2, ’0zone’, ’Unknown’)))

Note: Please contact the author or the GRUAN Lead Centre (gruan.lc@dwd.de) for
assistance related to the “specific value” functionality.

14 /36

mailto:gruan.lc@dwd.de

Sommer GRUAN-TN-6 Rev. 1.0 (2020-08-24)

3.4 Scheduling options

There is a number of options to manage scheduling purposes. In the GRUAN data flow, a sched-
uled date is required for each measurement, that means a planned launch date and time in case
of a radiosounding. Especially sounding sites that are operated by weather services normally
launch on a regular basis, e.g. at daily times 00 UTC or 12 UTC. In practice the actual time
of a site-specific launch may vary within one hour or so from day to day around the scheduled
nominal times.

In a first step, gtRsl creates a time schedule, and in a second step the files will be assigned to
these times.

Using the following group of options a range of dates can be defined. Start and end date can be
defined in an automatic way (-u, --auto-date) or manually (-s, --start-date and -e, --end-date).
The date <DATE> format should follow the ISO standard: yyyy-MM-dd (yyyy — year, e.g.
2017, MM — month, e.g. 12, dd — day of month, e.g. 04). The scheduling starts by default with
time “00:00:00.000Z”. If a different start time is to be used, it can be given with the option
-m,--start-time. The time <TIME> format should follow ISO as well: HH:mm:ss.SSS (HH —
hour, e.g. 23, mm — minute, e.g. 59, ss — second, e.g. 59, SSS — millisecond, e.g. 000). It is not
required to give a full time, e.g. “00” or “00:00” is allowed.

The schedule requires the definition of a measurement interval. The default is “PT12H” (what
means 12 hours), if nothing else is specified using -p, --period. The period <PERIOD> format
should follow ISO: e.g. “PT12H” (12 hours) or “PTTH30M” (1 hour and 30 minutes).

There are two options (-a, --after-slot and -b, --before-slot) to handle possible deviations be-
tween scheduled and actual launch date and time. With these options a time interval can be
defined so that the concerned launches are assigned to the same nominal schedule time, if they
are within that interval covering the schedule time minus “before slot” to schedule time plus
“after slot”. The default settings are “PT2H” for option -b and “PT1H” for option -a.

Two or more launches can be assigned to the same schedule date, e.g. in case of a relaunch after
a failed or aborted sounding. With the option -w, --launch-gap a time period can be defined
(default is “PT10M”) which separates between these launches.

In addition to the above scheduling options, a pre-defined time difference between ground
checks and launch can be defined by using the option -k, --check-gap (default is “PT20M”).
This creates the variables checkl _date to check5 _date and is useful if one or more ground checks
are defined in the template. For each ground check performed, a realistic time (relatively short
before the launch) must be specified in the final GRUAN meta data file. Since this is often
not known, these symbolic times are generated, which can be used in template files to store a
symbolic date and time for ground checks 1 to 5.

3.5 Blocking of files

It may occasionally happen that files available in source directories are not “compatible” with
the pre-defined setup (see change file), e.g. because of:

* change of the radiosonde type, e.g. from RS92 to RS41,
* an ozone sonde is attached to the radiosonde, but a “routine” sounding is expected.

15736

Sommer GRUAN-TN-6 Rev. 1.0 (2020-08-24)

In such cases it is necessary to block these files and to remove them from the list of selected
data files. There are two options for blocking:

* --block-formula — Define an evaluation formula or condition (see appendix D). If the
evaluation of this expression for a specific file will result in a “1” (true), the file will be
blocked.

* -x, --move-blocked-files — Move blocked source files to the quarantine directory (see Sec-
tion 3.7).

3.6 Detect double files

Sometimes two or more files with different names but identical or very similar content may be
found:
¢ same CRC, which indicates identical file content

» same file type, sonde serial number, and launch date and time; that means files from
the same sounding but with small deviations in content (e.g. a reprocessed or simulated
sounding).

In both cases it is necessary to remove the duplicate or multiple files from the list of data files
before processing.

Following options specify how to handle duplicates:

* -q, --move-double — Move all detected double source files to the quarantine directory (see
Section 3.7).

3.7 Create, copy, delete, and move files

The gtRsl tool is capable to perform some file operations using options to specify these in detail.
Before doing these file operations, the relevant directories must be defined:

» [FILE] — Define a user list of source files or directories. If not specified, the working
directory is used.

* -0,--out-dir — Define a user output directory. The result files will be created there, and the
copies of the used/related source data files will be saved there. A sub-folder structure will
be created there automatically:

— <site> — GRUAN site name, e.g. “Lindenberg”, “Cabauw”,
— <type of measurement system> — GRUAN name of measurement system, e.g. “Ra-
diosonde”, “Lidar”
* --quarantine-dir — In case of blocked or double files (Sections 3.5 and 3.6), this directory
is used to store such sorted out files.

The following further options can be used to manage files:

* -¢, --copy-all — Copy the complete set of source files to the output directory. Without
using this option, only GMD files will be created there.

16 /36

Sommer GRUAN-TN-6 Rev. 1.0 (2020-08-24)

* -d, --delete-all — Delete all related source files. If this option is used, option -c is au-
tomatically applied. That means, deletion without copying is not possible as a safety
precaution.

* -gq, --move-double — Move the detected double source files to the quarantine directory.

* -x, --move-blocked-files — Move the blocked source files to the quarantine directory.

3.8 FTP uploading options

Since version 0.4.0 the functionality to upload files directly to the GRUAN Lead Centre using
FTP is built in.

* -f, --ftp-conn <NAME> — name of the FTP connection for uploading files to GRUAN. If
NAME is not specified, then ‘GruanlncomingRawFTP’ is used as default.

With the option -f, the files in the user output directory (--out-dir) will be uploaded to GRUAN.
This is done after data file processing and creation and moving/storing the associated GMD files
to the output directory. After successful upload of the files to GRUAN they are deleted in the
local output directory.

The tool searches for a file named “<NAME>.properties” in the directory “config” (e.g. “Gru-
anIncomingRawFTP.properties”). Two default FTP connections are included in the tool: Gru-
anIncomingRawFTP and GruanIncomingTestRawFTP. For such a configuration file, the content
of “GruanIncomingTestRawFTP.properties” is given as an example:

I | type=org.gruan.config.FtpConfig
converter=org.osjava.sj.loader.convert.BeanConverter

SSIEN S}

4 | # definitions of FTP connection
5 | protocol=ftp

6 | provider=Hetzner

7 | host=filetransfer.gruan.info

8 | user=site_all

9 | passwd=(not shown here)

10 | dir=/test/raw

FTP configuration files must always start with exactly the indicated two lines (type, converter).
The following specifications are then expected for the definition of the access:

* protocol — data transfer protocol to use; only ‘ftp’ is currently implemented
* provider — text identifier of the provider; optional

* host —host server name (or IP address)

* user — user name to login

* passwd — user password to login

* dir — path to the base directory where the data should be stored/uploaded.

17736

Sommer GRUAN-TN-6 Rev. 1.0 (2020-08-24)

3.9 General options

There are additional, more general options:

* -[, --logging — Sets the logging level to another than the default (INFO), i.e. SEVERE,
WARNING, INFO, CONFIG, FINE, FINER, FINEST.

* _n, --no-abort — Increase the error tolerance of the tool.

Especially in the case of errors it can be useful to make the output of the tool more verbose
during processing. The logging level “INFO” is selected as the default. Already with the levels
“CONFIG” or “FINE” the output can be extended considerably.

gtRsl is often used in automated data flows. Errors can occur during processing for various
reasons, e.g. if an input file is corrupt and cannot be read correctly. Normally, the tool aborts
the processing if any “real” error occurs. However, this results in nothing being processed. With
the option -n this very strict behaviour can be made a bit more tolerant, so that errors that are
not considered critical for the entire processing will not cause the processing to be aborted.

4 Examples

Note: To increase the readability of the following examples, the commands have been
distributed over several lines. Normally, however, there is exactly one line. However,
depending on the operating system and the selected shell, there are ways to spread the
commands over several lines. If this is required, please consult the relevant documentation
for the shell you are using.

Note: Depending on the operating system, the directory levels within paths are separated
by different characters, e.g. */’ for Linux and °\” for Windows. Please follow the system
specific notation.

4.1 Example 1 — use of a time range

As an exercise you may run the processing for a defined time range (January 2012 — exactly
one month) using the given template (“templates/test-template.ftl”), change list (‘“changes/text-
change.txt”), and data files in the directory “~/test-data”. Some default values are used, because
they are not exactly specified, e.g. the period PT12H (12 hours), “before slot” PT2H (2 hours)
and “after slot” PT1H (1 hour). See Section 3.4 to find more information about the scheduling
options.

1 ‘ gtRsl -r -s "2012-01-01" -e "2012-02-01" -t "templates/test-template.ftl" ‘
2 ‘ -g "changes/test-changes.txt" "~ /test-data" ‘

18 /36

Sommer GRUAN-TN-6 Rev. 1.0 (2020-08-24)

4.2 Example 2 — use of start date only

Same as example 1 except using a time range from start date (2012-07-01) to now.

I‘ gtRsl -r -s "2012-07-01" -t "templates/test-template.ftl"
2 -g "changes/test-changes.txt" "~ /test-data"

4.3 Example 3 — use of automatic time range detection

Data files in the directory “new_files” will be parsed, i.e. the time range will automatically be
detected from files. The period between two launches is 3 hours (starting at 00:00:00Z) with
a minimum of 10 minutes for an afterstart. The relevant files will be copied into the folder
“upload” and deleted in the source folder. The amount of status information given by the tool
during processing is enhanced by using the log-level “CONFIG”.

1‘ gtRsl -r -¢ -d -n -u -m "00:00:00" -p "PT3H" -w "PT1O0M" -1 "CONFIG"

2 | -t "RS_ROUTINE_v4.ftl"
-g "changeFile_LAU-RS-02_2016.txt"
‘ -0 "upload"
‘ "new_files"

[T SOV }

4.4 Example 4 — use of data file blocking

A more complex example of a sounding system with an “unknown date” of sonde type change
from RS92 to RS41 is shown. Here data files for RS92 should be blocked and moved to the
directory “quarantine”. The files in the directory “input_data” will be parsed and the time range
is automatically detected within 30 min intervals starting at 00:00:00Z.

I | gtRsl -r -n -1 "INFO"

2 -u -m "00:00:00" -p "PT30M" -w "PT10OM" -b "PT15M" -a "PT15M"
3 -t "templates/RS_ROUTINE_temp6.ftl"

4 -g "changes/changeFile_SGP-S01_SGP-RS-01_2017.txt"

5 -g -—quarantine-dir="quarantine"

6 -o "upload"

7 --block-formula="S:equals (#{sonde_family}, ’RS92’)"

8 "input_data"

Note: This example uses the “specific value” functionality, which is briefly described in
Section 3.3.5. Please contact the GRUAN Lead Centre (gruan.lc @dwd.de) for assistance.

4.5 Example 5 — use of FTP upload

Same as example 3 except using in addition the pre-defined FTP connection “GruanIncomin-
gRawFTP” to upload data directly to the GRUAN LC (see Section 3.8).
| | gtRsl -t =¢ -d -n -u -m "00:00:00" -p "PT3H" -w "PT10M" -1 "CONFIG" \
2 | -t "RS_ROUTINE_v4.ftl" \
-g "changeFile LAU-RS-02_2016.txt" \

.
S

19736

mailto:gruan.lc@dwd.de

GRUAN-TN-6

Rev. 1.0 (2020-08-24)

-0 "upload"
-f "GruanIncomingRawFTP"
"new_files"

20/ 36

Sommer

GRUAN-TN-6 Rev. 1.0 (2020-08-24)

Appendix

A List of options

Full list of options for processing customisation. If main option -r is choose options -t, and -g
are mandatory.

16

18
19
20
21
22
23
24
25
26
27
28

29

o o= O

LW L) W LW L W W W W
00 N N B~ W

39
40
41

43
44
45
46

List of optioms:
-a,——-after-slot <PERIOD>

-b,—-before-slot <PERIOD>

—-block-formula <FORMULA>

-c,-—copy-all

-d,--delete-all

-e,-—end-date <DATETIME>

-f,-—-ftp-conn <NAME>

-g,-—change-list <FILE>
-h,--help
-k,--check-gap <PERIOD>

-1,--logging <LOG-LEVEL>

-m,--start-time <TIME>
-n,--no-abort
--no-create-if-corrupt

-0,—--out-dir <DIR>

-p,——period <PERIOD>
—-q,-—move-double

--quarantine-dir <DIR>

-r,--run
-s,—-start-date <DATETIME>

Period defines second part of time slot
after schedule date.

Period defines first part of time slot
before schedule date.

A formula used to block files, if

the evaluation results in ‘true’.

Copy referenced files to the specified
output directory (see --out-dir).

Delete referenced files after copying

to the specified output directory (see
--copy-all and --out-dir). Option
--copy-all is automatically set if not
done before.

End date defines last schedule date (not
included!) for creation of GMD files.

The name of FTP connection to use for
uploading files to GRUAN. If NAME is

not given, then ‘GruanIncomingRawFTP’ is
used as default.

List of changes for creation of GMD files.
Prints the help information and exit.
Period defines the gap between a check and
the launch or between two checks.

Sets the logging level; default is INFO. The
setting options are: SEVERE, WARNING, INFO,
CONFIG, FINE, FINER, FINEST.

Defines the time of first schedule date
(included) for creation of GMD files.
Continues the processing

after an error occurred?

Do not create GMD files in case of missing
required data files.

Output directory for created and

exported files. If not given the working
directory is used as default.

Period defining the time interval between
two schedule dates for creation of GMD files.
Detect (CRC or SN) and move double files to
a quarantine folder.

Quarantine directory for duplicate or
blocked files. If not specified the option
--move-double only produces messages and
the option --move-blocked-files has no effect.
Runs an automatic creation of GMD files.
Start date defines first schedule date

21/36

Sommer GRUAN-TN-6 Rev. 1.0 (2020-08-24)

47 (included) for creation of GMD files.

48 -t,——template <FILE> Template for creation of GMD files.

49 --tmp-dir <DIR> Directory for temporary files. If not specified,
50 the system temporary directory is used.

51 -u,-—-auto-date Automatic definition of start and end date.

52 -v,--version Prints the version information and exit.

53 -w,-—-launch-gap <PERIOD> Period defines the minimum time gap between

54 two launches at one time step (e.g. afterstart).
55 -X,--move-blocked-files Move blocked files to the quarantine folder.

B Example template files

The gtRsl is a helper tool for semi-automatic use. It can help to create necessary GMD files
for each measurement event (e.g. radiosonde launch). As base a template file is required (see
Section 3.2).

B.1 Template file for a routine launch with auto-launcher

The template is created based on the following sounding equipment and specific properties:

* Data processing system (DPS) with related data files
* Ground check tool 1

Balloon with specific information about gas, filling volume and included parachute

* Parachute

e Unwinder

* Rig (in case of routine launch always SOLO)

* Radiosonde with link to DPS and specific check (performed with the check tool 1).

This example template can be used for launches performed with an auto-launcher system. The
template variables ${variable_name} have to be pre-filled using the “change file”.

| | <#setting number_format="computer">

2 | <?7xml version="1.0" encoding="UTF-8"7>

3 | <gmdFile xmlns="http://www.gruan.org/GruanMetaData/1.0"
4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

5 xsi:schemalocation="http://www.gruan.org/GruanMetaData/1.0
6 GruanMetaData-1.0.xsd">

7 <#escape x as x7xml>

8 <version>1.2</version>

9 <creatorTool>${creation_tool}</creatorTool>

10 <timestamp>${creation_timestamp}</timestamp>
11 <purpose>RsLaunch</purpose>

12 <RsLaunch measurementNumber="${launch_number}"

13 measurementSystem="${measuring_system}" operator="${operator}"

14 setup="${measuring}" standardDate="${launch_date}" station="${site_name}"
15 version="${launch_version}">

16 <comment>${creation_comment}</comment>

17 <rsPart code="${dps_typel}" group="GROUND" permanentCode="${dps_pcodel}"

18 specificCode="${dps_scodel}"

22 /36

Sommer GRUAN-TN-6 Rev. 1.0 (2020-08-24)

20

46

49

<#if !required_data>corrupt="true"</#if> sn="${dps_sn}" type="DPS">
<#list data_files as file>
<file crc="${file.fileChecksum}" fileType="${file.fileType}"
filename="${file.fileNamel}"
localPath="${file.filePathl}"
localType="LOCAL" size="${file.fileLength}" />
</#list>
</rsPart>
<rsPart code="${checktooll_typel}" group="GROUND"
permanentCode="${checktooll_pcode}" specificCode="${checktooll_scode}"
sn="${checktooll_sn}" type="CheckTool"/>
<rsPart code="${balloon_type}" group="LAUNCH" sn="none" type="Balloon">
<property name="Gas" relatedTo="event" type="ENUMERATION"
value="${balloon_gas}"/>
<property name="FillingVolumn" relatedTo="event" type="FLOAT"
value="${balloon_filling}"/>
<property name="WithInsideParachute" relatedTo="event" type="BOOLEAN"
value="${parachute_insidel}"/>
</rsPart>
<rsPart code="${parachute_typel}" group="LAUNCH" sn="none" type="Parachute"/>
<rsPart code="${unwinder_type}" group="LAUNCH" sn="none" type="Unwinder"/>
<rsPart code="${rig_typel}" group="LAUNCH" sn="none" type="Rig"/>
<rsPart code="${sonde_type}" group="LAUNCH" sn="${sonde_sn}" type="Sonde">
<check code="${checkl}" date="${checkl_datel}">
<tool code="${checktooll_type}" permanentCode="${checktooll_pcodel}"
specificCode="${checktooll_scode}" sn="${checktooll_sn}"/>
</check>
<dataFlow code="${dps_type}" permanentCode="${dps_pcode}"
specificCode="${dps_scode}" sn="${dps_sn}"/>
</rsPart>
</RsLaunch>
</#escape>
</gmdFile>

B.2 Template file for a manual ozone sounding

The following equipment and specific properties are considered in this template:

Data processing system (DPS) with related data files

Ground check tools 1, 2, and 3

Balloon with specific information about gas type, filling volume and integrated parachute
Parachute

Unwinder

Rig (in case of ozone launch often BLOCK)

Radiosonde with link to DPS and two specific checks (performed with the check tools 1
and 2)

Ozone sonde with link to DPS and specific check (preparation performed with the check
tool 3)

This example template can be used for typical manual ozone launches. The template variables
${variable_name} have to be pre-filled using the “change file”.

23 /36

Sommer GRUAN-TN-6 Rev. 1.0 (2020-08-24)

16

18

26

28

29

46

W W

W
(SO NG Ry

wn WL W
(W

o))

<#setting number_format="computer">
<?7xml version="1.0" encoding="UTF-8"7>
<gmdFile xmlns="http://www.gruan.org/GruanMetaData/1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemalocation="http://www.gruan.org/GruanMetaData/1.0
GruanMetaData-1.0.xsd">
<#escape x as x7xml>
<version>1.2</version>
<creatorTool>${creation_tool}</creatorTool>
<timestamp>${creation_timestampl}</timestamp>
<purpose>RsLaunch</purpose>
<RsLaunch measurementNumber="${launch_number}"
measurementSystem="${measuring_system}" operator="${operator}"
setup="${measuring}" standardDate="${launch_date}" station="${site_namel}"
version="${launch_version}">
<comment>${creation_comment}</comment>
<rsPart code="${dps_type}" group="GROUND" permanentCode="${dps_pcodel}"
sn="${dps_sn}" <#if !required_data>corrupt="true"</#if>
specificCode="${dps_scode}" type="DPS">
<#list data_files as file>
<file crc="${file.fileChecksum}" fileType="${file.fileType}"
filename="${file.fileNamel}"
localPath="${file.filePathl}"
localType="LOCAL" size="${file.fileLengthl}" />
</#list>
</rsPart>
<rsPart code="${checktooll_typel}" group="GROUND"
permanentCode="${checktooll_pcode}" specificCode="${checktooll_scodel}"
sn="${checktooll_sn}" type="CheckTool"/>
<rsPart code="${checktool2_typel}" group="GROUND"
permanentCode="${checktool2_pcode}" specificCode="${checktool2_scode}"
sn="${checktool2_sn}" type="CheckTool"/>
<rsPart code="${checktool3_typel}" group="GROUND"
permanentCode="${checktool3_pcode}" specificCode="${checktool3_scodel}"
sn="${checktool3_sn}" type="CheckTool"/>
<rsPart code="${balloon_type}" group="LAUNCH" sn="none" type="Balloon">
<property name="Gas" relatedTo="event" type="ENUMERATION"
value="${balloon_gas}"/>
<property name="FillingWeight" relatedTo="event" type="FLOAT"
value="${balloon_filling}"/>
<property name="Pretreatment" relatedTo="event" type="FLOAT"
value="${balloon_pretreatl}"/>
</rsPart>
<rsPart code="${parachute_type}" group="LAUNCH" sn="none" type="Parachute"/>
<rsPart code="${unwinder_type}" group="LAUNCH" sn="none" type="Unwinder"/>
<rsPart code="${rig_typel}" group="LAUNCH" sn="none" type="Rig"/>
<rsPart code="${sonde_type}" group="LAUNCH" sn="${sonde_sn}" type="Sonde">
<check code="${checkl}" date="${checkl_datel}">
<tool code="${checktooll_type}" permanentCode="${checktooll_pcodel}"
specificCode="${checktooll_scode}" sn="${checktooll_sn}"/>
</check>
<check code="${check2}" date="${check2_date}">
<tool code="${checktool2_type}" permanentCode="${checktool2_pcodel}"
specificCode="${checktool2_scode}" sn="${checktool2_sn}"/>
<property name="Pot100.RefRelativeHumidity" type="FLOAT" value="100.0"/>
</check>

24 /36

Sommer GRUAN-TN-6 Rev. 1.0 (2020-08-24)

57 <dataFlow code="${dps_type}" permanentCode="${dps_pcode}" sn="${dps_sn}"/>
58 </rsPart>

59 <rsPart code="${sonde2_type}" group="LAUNCH" sn="${sonde2_sn}" type="Sonde">
60 <check code="${check3}" date="${check3_date}">

61 <tool code="${checktool3_type}" permanentCode="${checktool3_pcodel}"

62 specificCode="${checktool3_scode}" sn="${checktool3_sn}"/>

63 </check>

64 <dataFlow code="${dps_type}" permanentCode="${dps_pcode}" sn="${dps_sn}"/>
65 </rsPart>

66 </RsLaunch>

67 </#escape>

68 | </gmdFile>

C Example change-list files

The gtRsl is a helper tool for semi-automatic use. It can help to create necessary GMD files for
each measurement event (e.g. radiosonde launch). A base configuration and all configuration
changes over time should be defined in a change-list file (see section 3.3).

C.1 Example change-list file from a site with few changes over
time

The following example of a change-list file contains a full base configuration of a routine sound-
ing measurement program with only few configuration changes over time.

e
2 | # Change file for MCM (McMurdo)
3 [
4 | # Syntax: key;start date;value

N
e
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

8 | #

9 | # ———————————————
10 | # Main properties
R
2| #

13 | site; ;MCM

14 | site_name; ;McMurdo

15 | measuring_system; ; MCM-RS-01
16 | measuring;2019-01-01;ROUTINE
17 | launch_number; ;1

18 | launch_version; ;1

3| # >> NZCM_20190125_103934 .mwx

25736

Sommer GRUAN-TN-6 Rev. 1.0 (2020-08-24)

46
47
48
49
50
51
52
53
54
55
56
57
58

60
61
62
63
64
65
66
67
68
69
70
71
72
73

file_types; ;MWX
file_codes; ;FO1

file_date_formats;;yyyyMMdd’_’HHmmss
file_date_starts; ;5

file_required; ;true

file_ignore_pe; ;false

file_sv_use; ;true

file_sv_FO1_names;;SondeFamily
file_sv_FO01_SondeFamily_target;;sonde_family
file_sv_FO01_SondeFamily_default; ; 0O-UNKNOWN-SONDE

operator; ; DUMMY

balloon
balloon_type; ; TA350
balloon_gas;;Helium
balloon_filling; ;1300

setup components
unwinder_type; ;UW-V55-4
parachute_type; ; 0-NONE
rig_type;;SOLO

sonde_type; ;RS41-SGP

data processing system
dps_type; ; DC-MW41
dps_pcode; ; MW41-SYSTEMS
dps_scode; ;MW41-1_001
dps_sn;;mcm-mw4l-1

ground check with used tool
check; ;GC-RI41
checktool_type; ;DC-RI41
checktool_pcode; ;RI41-UNITS
checktool_scode; ;RI41-1_001
checktool_sn; ;mcm-ridi-1

change of balloon (from TA350 to TA500) at 2019-05-01T12
balloon_type;2019-05-01T12;TA500
balloon_£filling;2019-05-01T12;1800

#

change of balloon back (from TA500 to TA350) at 2019-10-01TO0O
balloon_type;2019-05-01T12;TA350
balloon_£filling;2019-05-01T12;1300

#

26 /36

Sommer GRUAN-TN-6 Rev. 1.0 (2020-08-24)

D Evaluation formulas

For different purposes it is useful to have the option to define and evaluate simple mathematical,
string, or conditional expressions. Therefore the feature of “evaluation formulas” has been
integrated.

D.1 General usage

Simple mathematical and string operations can be applied to the given variables, or e.g. condi-
tional expressions can be evaluated. Special values can be passed to the expression #{value}.
Instead of “value”, other named variables can be used in certain situations, e.g. #{sonde_family}.

The contents of variables can be interpreted as “string” (text value) or as “number” (floating
point value). It is necessary to choose between these two. This is done by starting each expres-
sion or formula with either s: (string) or n: (number), see the following example:

Round a number

1

> | N:rounding(#{valuel}, 4)

3| # Get one part of a string without any whitespace around
4 S:trim(part (#{value}, ’_’, 0))

5| # Give an empty string in case of ’None’

6 | S:ifs(#{value} == ’Nomne’, ’’, #{valuel})

gtRsl includes the following contexts where “evaluation formulas™ can be used:

* The option --block-formula can handle such formulas (see section 3.5).

» The definition of special values of specific file types (e.g. MWX) can handle such for-
mulas in the definition line sv.<Name>.jeval of “SpecificValues.properties” files (see
section 3.3.5).

Note: In case of “.properties” files it is necessary to mask the special character “#”,
because it would be detected as marker to start a comment. Please use “\#” instead.

Same example formulas in case of “.properties” files:

Round a number

1

2 | N:rounding (\#{value}, 4)

3| # Get one part of a string without any whitespace around
4| S:trim(part (\#{value}, ’_’, 0))

5| # Give an empty string in case of ’None’

6 | S:ifs(\#{value} == ’Nomne’, ’’, \#{valuel})

Note: When using the option --block-formula, don’t use white-space characters because
they are treated as special characters at the command line.

Same example formulas in case of command line argument:

‘# Round a number
N:rounding (#{valuel},4)

1
2

27136

Sommer GRUAN-TN-6 Rev. 1.0 (2020-08-24)

Get one part of a string without any whitespace around
‘S:trim(part(#{value},’_’,O))

‘# Give an empty string in case of ’None’
‘S:ifs(#{value}==’None’,”,#{value})

3
4
5
6

Note: A parsing error is reported if any error occurs when applying formulas. Unfor-
tunately, it may be difficult to find and solve the error. Please contact the author or the
GRUAN Lead Centre (gruan.lc@dwd.de) in such cases.

D.2 Operators

The evaluation formulas — like normal formulas — can be nested at any depth. The following
operators can be used for this purpose.

* & & — (number) The boolean “and” operator.

* ! — (number) The boolean “not” operator.

* || — (number) The boolean “or” operator.

* / — (number) The division operator.

* 9% — (number) The modulus operator.

* *— (number) The multiplication operator.

* - — (number) The subtraction operator.

* + — (number or string) The addition operator.

* == — (number or string) The equal operator.

* /= — (number or string) The not equal operator.

* > — (number or string) The greater than operator.

* >=— (number or string) The greater than or equal operator.
* < — (number or string) The less than operator.

* <= — (number or string) The less than or equal operator.

(— (number or string) The opening bracket to start a group (a part) of formula.

*) — (number or string) The closing bracket to finish a group (a part) of formula.

D.3 String functions

A large number of functions is defined that require “string” values as main input and/or output
variables. Each function must be called with a fixed number of arguments.

* charAt(<string> , <int>) — Returns the character at the specified index in the source
string. Argl is the source string and arg?2 (int) is the specified index.

* comparelo(<string> , <string>) — Compares two strings lexicographically. Argl is
first string and arg2 second string.

* comparelolgnoreCase(<string>, <string>) — Compares two strings lexicographically,
ignoring case considerations. Argl is first string and arg2 second string.

28 /36

mailto:gruan.lc@dwd.de

Sommer GRUAN-TN-6 Rev. 1.0 (2020-08-24)

D.4

concat(<string> , <string>) — Concatenates the second string to the end of the first.
Argl is first string and arg2 second string.

endsWith(<string> , <string>) — Tests if the string ends with a specified suffix. Argl
is the source string and arg2 is the specified suffix.

equals(<string> , <string>) — Tests one string equals another. Argl is first string and
arg?2 second string.

equalslignoreCase(<string> , <string>) — Tests one string equals another, but ignores
case. Argl is first string and arg2 second string.

eval(<string>) — The function returns the result of a compatible expression. Argl is the
compatible expression as string.

indexOf(<string>, <string>, <int>) — Returns the index within the source string of the
first occurrence of the substring, starting at the specified index. Argl is the source string,
arg? is the substring and arg3 (int) is the specified index.

lastindexOf(<string>, <string>, <int>) — Returns the index within the source string
of the last occurrence of the substring, starting at the specified index. Argl is the source
string, arg? is the substring and arg3 (int) is the specified index.

length(<string>) — Returns the length of the source string. Argl is the source string.

replace(<string>, <char>, <char>) —Returns a new string with all of the occurrences
of the old character in the source string replaced with the new character. Argl is the source
string, arg? is the old character and arg3 is the new character.

startsWith(<string>, <string>, <int>) — Tests if the string starts with a specified prefix
beginning at a specified index. Argl is the source string, arg2 is the substring and arg3
(int) is the specified index.

substring(<string> , <int>, <int>) — Returns a string that is a substring of the source
string. Argl is the source string, arg2 (int) is the starting index (inclusive) and arg3 (int)
is the ending index (exclusive).

toLowerCase(<string>) — Returns the source string in lower case. Argl is the source
string.

toUpperCase(<string>) — Returns the source string in upper case. Argl is the source
string.

trim(<string>) — Returns the source string with white space removed from both ends.
Argl is the source string.

Math functions

The defined mathematical functions are listed below. They require numeric values as input
and/or output variables. Each function must be called with a fixed number of arguments.

abs(<double>) — Returns the absolute value of a double value. Argl is the double value.
acos(<double>) — Returns the arc cosine of an angle. Argl is the angle.

asin(<double>) — Returns the arc sine of an angle. Argl is the angle.

atan(<double>) — Returns the arc tangent of an angle. Argl is the angle.

atan2(<double> , <double>) — Converts rectangular coordinates to polar. Returns

29/36

Sommer GRUAN-TN-6 Rev. 1.0 (2020-08-24)

the angle theta from the conversion of rectangular coordinates (z, y) to polar coordinates
(r,0). This method computes the phase theta by computing an arc tangent of y/z in
the range of —m to 7. Argl is y — the ordinate coordinate and arg2 is x — the abscissa
coordinate.

e ceil(<double>) — Returns the ceiling value of a double value. It is the smallest (closest
to negative infinity) double value that is greater than or equal to the argument and is equal
to a mathematical integer. Argl is the double value.

* cos(<double>) — The function returns the trigonometric cosine of an angle. Argl is the
angle.

* exp(<double>) — Returns the exponential number e (i.e., 2.718...) raised to the power
of a double value. Argl is the double value.

* floor(<double>) — Returns the floor value of a double value. Returns the largest (closest
to positive infinity) double value that is less than or equal to the argument and is equal to
a mathematical integer. Argl is the double value.

* I[EEEremainder(<double> , <double>) — Returns the remainder operation on two ar-
guments as prescribed by the IEEE 754 standard. The remainder value is mathematically
equal to f1 — f2 x n, where n is the mathematical integer closest to the exact mathe-
matical value of the quotient f;/ fs, and if two mathematical integers are equally close to
f1/f2, then n is the integer that is even. If the remainder is zero, its sign is the same as
the sign of the first argument. Argl is f; — the dividend and arg2 is f; the divisor.

* log(<double>) — The function returns the natural logarithm (base e) of a double value.
Argl is the double value.

* max(<double> , <double>) — Returns the greater of two double values. Argl is first
double value and arg? is second double value.

* min(<double> , <double>) — Returns the smaller of two double values. Argl is first
double value and arg? is second double value.

* pow(<double> , <double>) — Returns the value of the first argument (argl) raised to
the second power of the second argument (arg2).

* random() — The function returns a random double value greater than or equal to 0.0 and
less than 1.0. This function has no arguments.

* rint(<double>) — Returns the double value that is closest in value to the argument (argl)
and is equal to a mathematical integer.

* round(<double>) — Returns the closet long to a double value. Argl is the double value.
* sin(<double>) — Returns the sine of an angle. Argl is the angle.

* sqrt(<double>) — Returns a square root of a double value. Argl is the double value.

* tan(<double>) — Returns trigonometric tangent of an angle. Argl is the angle.

* toDegrees(<double>) — Converts an angle measured in radians to the equivalent angle
measured in degrees. Argl is the angle measured in radians.

* toRadians(<double>) — Converts an angle measured in degrees to the equivalent angle
measured in radians. Argl is the angle measured in degrees.

30/36

Sommer GRUAN-TN-6 Rev. 1.0 (2020-08-24)

D.5 Additional GRUAN functions

In addition to the default “math” and “string” functions, a number of further functions for
GRUAN purposes is provided.

Note: It is possible to add more functions if needed. Please contact the author or the
GRUAN Lead Centre (gruan.lc@dwd.de) to provide a proposal.

D.5.1 Scalar functions

The following scalar functions are of the same type as the default “math” and “string” functions
and complement them.

* contains(<string>, <string>) — Checks if a source string contains a search string. Argl
is the source string and arg?2 is the search string.

o emptylToNullFunction(<string>) — Returns null in case of an empty string (with length
0). Argl is the source string.

* ifm(<bool> , <double> , <double>) — The function is a “IF” statement for numbers.
Argl (bool) is the expression with a boolean result, e.g. 1 (true) or O (false). Arg2 is the
result in case of true (1) and arg3 is the result in case of false (0).

* ifs(<bool>, <string> , <string>) — The function is a “IF” statement for strings. Argl
(bool) is the expression with a boolean result, e.g. 1 (true) or 0 (false). Arg2 is the result
in case of true (1) and arg3 is the result in case of false (0).

* isNaN(<double>) — Returns true (1) if the specified number is a Not-a-Number (NaN)
value, false (0) otherwise. Argl is the value of type double.

* match(<string> , <string>) — Returns true (1) or false (0) if the source string matches
the given regular expression. Argl is the source string and arg?2 is the regular expression.

* part(<string> , <string> , <int>) — Splits the provided text into an array using the
given separator and returns one part of this splitted string. Argl is the source string, arg2
is the separator char (or stirng) and arg3 is the index of the part (starting with 0).

* partCount(<string> , <string>) — Splits the provided text into an array using the given
separator and returns the count of parts. Argl is the source string and arg?2 is the separator
character (or string).

* posDistFunction(<double> , <double> , <double> , <double> [, <dbl> , <dbl>])
— Calculates the geodetic curve between two points on a specified reference ellipsoid (if 4
arguments are given), or calculates the three dimensional geodetic measurement between
two positions measured in reference to a specified ellipsoid (if 6 arguments are given).
The ellipsoid “WGS84” is used. Argl is the latitude of point A and arg2 is the longitude
of point A. Arg3 is the latitude of point B and arg4 is the longitude of point B. Optional
arguments arg4 and arg5 are the elevations of point A and B.

* rounding(<double> , <int> , <string>) — Returns a rounded value using the given
fraction and rounding mode. Argl is the value of type double, arg?2 is the fraction and arg3
is the rounding mode. Following modes are available: UP, DOWN, CEILING, FLOOR,
HALF_UP, HALF_DOWN, HALF _EVEN.

31/36

mailto:gruan.lc@dwd.de

Sommer GRUAN-TN-6 Rev. 1.0 (2020-08-24)

* signum(<double>) — Returns the signum function of the argument; zero if the argument
is zero, 1.0 if the argument is greater than zero, —1.0 if the argument is less than zero.
Argl is the value of type double.

* substringBetween(<string> , <string> , <string>) — Returns the string that is nested
in between two strings. Only the first match is returned. Argl is the source string which
contains the substring, arg2 is the opening string before the substring and arg3 is the
closing string after the substring.

* toNumber(<string>) — Convert given string to number. Argl is the source string.

* toString(<double>) — Convert given number to string. Argl is the value of type double.

D.5.2 Array functions

Array functions are implemented especially for the calculation of results related to data series.
Therefore, they can only be used in specific contexts. With the current version, the gzRs/ does
not provide a suitable context.

* avgKernel(<string>, <string>, <int>) — Calculates a running mean of a given variable
(array) using a kernel function with a given size. Argl is the kernel type (currently only
“test” is available), arg? is the variable name, and arg3 (int) is the kernel size.

o stat(<string> , <string> , <int>) — Calculates a statistical function of a given variable
(array) with a given length. Argl is the actual function name, arg? is the variable name,
and arg3 (int) is the length. The following statistical functions, applying each to the values
in the entire actual array, are available:

— mean — Arithmetic mean.

— geometricMean — Geometric mean.

— max — Maximum.

— min — Minimum.

— product — Product.

- sum — Sum.

— sumLog — Sum of the natural logarithm.
— sumSq — Sum of the squares.

— variance — Variance.

— stdDev — Standard deviation.

populationVariance — Population variance.

E History of development of gtRs/

The gtRsl is constantly being developed. This chapter briefly describes the changes back to first
functional version (v0.2).

32/36

Sommer GRUAN-TN-6 Rev. 1.0 (2020-08-24)
E.1 History of Version 0.5.x
I | *0.56.1.08 (2020-08-18) - change: improve MWX file definition for MW41l v2.15
2 0.5.1_07 (2020-08-05) - change: update file format IGNC-RAW to v1.2.1
3 - bug fixed: get correct StartDateTime in
4 ‘IpslGruanNcRawFileMdExtractor’
5] % 0.5.1_06 (2020-04-29) - change: update file format IGNC-RAW to v1.2.0
6 - optimised and restructured ‘DataFile’ classes which
7 allows easier adding of new config properties
8| * 0.5.1.05 (2020-02-28) - bug fixed: crash in case of several files and
9 several SN
10| * 0.5.1_04 (2019-10-16) - bug fixed: overwritten special value definitions
11 from config file
12 - change: update MWX file definition for MWw41l v2.15
13 0.5.1_03 (2019-06-28) - change file format name (‘Sirta...’ to ‘Ipsl...’)
14| % 0.5.1_02 (2019-05-06) - bug fixed: crash during check of wrong date
15 (05/06/2017 >> 06/05/2017)
16 | * 0.5.1_01 (2019-05-06) - optimisation of GSFZ (real meta-data only)
17 | * 0.5.1 (2019-05-06) - add handling of GSFZ
18| * 0.5.0_01 (2019-04-15) - remove ‘*SpecialValues.properties’ files
19| * 0.5.0 (2019-04-02) - change handling of special values
E.2 History of Version 0.4.x
1 0.4.4_.01 (2019-03-28) - change name of file type from SGNC-RAW to IGNC-RAW
2 0.4.4 (2019-03-19) - add handling of SGNC-RAW
3 0.4.3_03 (2018-10-23) - change ftp connections GruanIncomingRawFTP and
4 GruanIncomingTestRawFTP to use gruan.info (at
5 Hetzner)
6 - change: update MWX file definition for MW41l v2.11
7 0.4.3_02 (2018-10-23) - new compiled only
8 0.4.3.01 (2018-02-09) - first test to improve temporary file deletion of
9 MWX files
10 # add umount MWX file as archive
11 0.4.3 (2018-02-08) - bug fixed with use of tmp-dir
12 0.4.2 (2018-02-08) - add option ‘--tmp-dir’
13 # is used by file reader classes MwxFile and
14 Dc3DbFile
15 0.4.1 (2018-01-04) - add use of proxy server (look at file ‘config/’)
16 0.4. (2018-01-03) - add option ‘--ftp-conn’
17 # uploading all files from --out-dir to GRUAN
18 # delete all uploaded files locally
19 # search in directory ‘config’ if a file with
20 <NAME>.properties exist (e.g. GruanIncomingRawFTP
21 .properties)
22 # following two default FTP connections are
23 included: GruanIncomingRawFTP and
24 GruanIncomingTestRawFTP

E.3 History of Version 0.3.x

(2017-12-19) - bug fixed: in case of using *SpecialValues.

properties files

(2017-12-18) - add option ‘--no-create-if-corrupt’

bug fixed: in case of missing *SpecialValues.

33/36

Sommer

GRUAN-TN-6

5
6
7
8| *x 0.3.3
9
10
11
12 0.3.2
13 0.3.1
14
15
16
17 | * 0.3.0
18
19
20

E.4
1| *x 0.2.27
2
3] % 0.2.26
41 % 0.2.25
5
6] % 0.2.24
71 % 0.2.23
8
9] % 0.2.22
10
11 * 0.2.21
12| % 0.2.20
13 % 0.2.19
141 % 0.2.18
15 % 0.2.17
16
17
18 % 0.2.16
19
20
21
M
24 | % 0.2.15
25
26 | * 0.2.14
27
28 | * 0.2.13
29
30 0.2.12
31 0.2.11
32
331 % 0.2.10
34
35
36 0.2.9
37 0.2.8

(2017-12-14)

(2017-12-04)
(2017-12-01)

(2017-11-29)

(2017-11-01)

(2017-10-23)
(2017-03-31)

(2016-11-09)
(2016-11-08)

(2016-10-20)
(2015-10-05)
(2015-09-30)
(2015-08-25)

(2015-07-03)
(2015-04-24)

(2015-02-02)

(2015-01-02)

(2014-12-11)

(2014-10-29)

(2013-11-19)
(2013-09-13)

(2013-08-30)

(2013-08-26)
(2013-02-12)

properties files (DC3DB)

bug fixed: detecting double files (no comparing of
same file anymore)

bug fixed: in case of missing *SpecialValues.
properties files (MWX)

better error message in case of missing

file_* keys in change file

optimize handling of special values

add possibility to block files and to move blocked
files to a quarantine directory

add option ‘--block-formula’

add option ‘--move-blocked-files’

add detecting and moving double files to a
quarantine directory

add option ‘--move-double’

add option ‘--quarantine-dir’

[

[4

History of Version 0.2.x

improve handling of double/after launches with
more than 2 parallel launches

add handling of DC3DB-ADD (same like DC3DB)
changed handling of parse errors (can be ignored
or not ignored now)

bug fixed: improved file deletion

improved file deletion (because error with last
MWX file)

new version for Lauder (Invercargill)

with MWX support

new version for Sodankyla

new compiled only

renewed NetCDF libraries

new compiled only

compiled with java-1.8.0-openjdk-1.8.0 (to JRE 1.7
features)

Add JEval library to jar

arbitrary ‘SpecialValues’ with DC3DB files

Add option ‘--check-gap’

automatic calculation of checkl_date to checkb_date
checkl_date is launch_date minus ‘check-gap’

check2_date is checkl_date minus ‘check-gap’

3 oo

bug fixed: related to extraction of metadata from
DC3DB files (Config)

bug fixed: related to ‘SpecialValues’. Now empty
values allowed.

extended possibilities of extraction of metadata
(SpecialValues)

extension of file definitions with CODE

Better handling of cancelling if files already
exist

DC3DB file can handle RS80 now

standardised internal configuration files
(Properties)

Add new automatic parameter ‘creation_tool’
Correction of compare-method of class

34736

Rev. 1.0 (2020-08-24)

GRUAN-TN-6 Rev. 1.0 (2020-08-24)

46

W\ L W W

D o =

0.2.7

0.2.6

0.2.5

0.2.4

(2013-01-07)

(2013-01-04)

(2012-12-20)

(2012-08-07)

TemporalChange (sometimes crashes)

compare files within a time step using SN

(if possible)

new option --launch-gap [default 10 min]
automatic detection of correct time range

new options --auto-date and --start-time

use sub-directories during upload (e.g.
‘Lindenberg/Radiosonde’)

improved detection of several errors and issues
correction of the handling of dual launches
(mostly afterstarts of a failed/cancelled launch)
extract launchDate and SN from DC3DB files
improved error handling in case of corrupt files
(during parsing)

Well running version with new features related to
dual launches

35/36

Sommer GRUAN-TN-6 Rev. 1.0 (2020-08-24)

Acronyms

CRC Cyclic redundancy check
DPS Data processing system
FTL File template language

FTP File Transfer Protocol
GMD GRUAN meta data
GRUAN GCOS Upper-Air Network
gtRsl GruanToolRsLaunch

GUI Graphical user interface

P Internet Protocol

ISO International Organization for Standardization
JRE Java Runtime Environment
UTC Coordinated Universal Time
RLC GruanRsLaunchClient

LC Lead Centre

36/36

	Installation
	System requirements for running GruanToolRsLaunch
	Download and install Java
	Download GruanToolRsLaunch
	Installing GruanToolRsLaunch

	General usage
	Command options
	Option -r, --run
	Option -t, --template <FILE>
	Option -g, --change-list <FILE>
	Comments
	Timestamps of change events
	Definitions of data file types
	Processable sounding file types
	Special values in change files

	Scheduling options
	Blocking of files
	Detect double files
	Create, copy, delete, and move files
	FTP uploading options
	General options

	Examples
	Example 1 – use of a time range
	Example 2 – use of start date only
	Example 3 – use of automatic time range detection
	Example 4 – use of data file blocking
	Example 5 – use of FTP upload

	List of options
	Example template files
	Template file for a routine launch with auto-launcher
	Template file for a manual ozone sounding

	Example change-list files
	Example change-list file from a site with few changes over time

	Evaluation formulas
	General usage
	Operators
	String functions
	Math functions
	Additional GRUAN functions
	Scalar functions
	Array functions

	History of development of gtRsl
	History of Version 0.5.x
	History of Version 0.4.x
	History of Version 0.3.x
	History of Version 0.2.x

	Acronyms

