Cost-Effective Platforms for Near-Space Research and Experiments


Kobi Gozlan, Yuval Reuveni, Kfir Cohen, Boaz Ben-Moshe and Eyal Berliner


by IntechOpen (IO) at 2018-06-20


High-altitude balloons (HABs) are commonly used for atmospheric research. In recent years, newly developed platforms and instruments allow to measure position, temperature, radiation, humidity and gas profile in the troposphere and stratosphere. However, current platforms, such as radiosonde, have limited bandwidth and relatively small number of possible sensors on board. Furthermore, all the measuring instruments carried on board the balloon cannot be reused since most of the times the radiosonde cannot be retrieved. In this chapter, we present a generic near-space research platform based on an improved radio frequency (RF) communication, an advanced set of sensors that might also include a return-to-home (RTH) micro-UAV. We present the overall structure of an advanced HAB payload, which is equipped with a low-cost sophisticated set of sensors along with HD camera system, which weight less than 300 g. The payload is tied to a weather balloon with a smart autonomous release mechanism and two-way RF telemetry channel (LoRa or Iridium communication). The payload can be released from the balloon at any given time or position,
allowing it to fall at a predicted area. In case the payload is attached to a micro UAV, it can return autonomously by multioptional smart decline to a pre-defined location using a built-in autopilot. The suggested new strategy is presented using several case studies and field experiments.


Kobi Gozlan, Yuval Reuveni, Kfir Cohen, Boaz Ben-Moshe and Eyal Berliner (June 20th 2018). Cost-Effective Platforms for Near-Space Research and Experiments, Space Flight George Dekoulis, IntechOpen, DOI: 10.5772/intechopen.72168. Available from: www.intechopen.com/books/space-flight/cost-effective-platforms-for-near-space-research-and-experiments


Full article (PDF)