Accurate measurements of upper troposphere humidity are essential to enhance understanding of contrail formation and guiding mitigation efforts. This study evaluates the ability of the IPRAL Raman Lidar, located south of Paris, to provide high-resolution water vapour mixing ratio (WVMR) profiles at contrail-relevant altitudes. Raman signals are screened on hourly bases, and a universal calibration method, independent of acquisition mode, is proposed towards operational Lidar water vapour profiles, using co-located ERA5 data. Calibration factors are derived from comparisons between 4 and 6 km, and nightly coefficients determined from hourly factors. Instrumental stability is monitored through the temporal evolution of calibration factors, and stable-period medians are adopted as final values. The uncertainty of calibrated WVMR profiles is assessed by comparison with GRUAN processed Meteomodem M10 radiosondes and ERA5 data. Results show a high agreement (>90%), with IPRAL exhibiting a small negative bias (~10%) below 8 km, reducing to ~5% up to 10.5 km to radiosondes. ERA5 systematically underestimates water vapour at cruise altitudes, with a dry bias increasing from 10% at 9 km to >20% at 11 km. Recent IAGOS corrections to ERA5, improving supersaturation representation, are validated over Paris. This calibrated Lidar data set supports improved atmospheric modelling and contributes to future air traffic management strategies.
Title
Calibration of Upper Air Water Vapour Profiles Using the IPRAL Raman Lidar and ERA5 Model Results and Comparison to GRUAN Radiosonde Observations
Authors
Alraddawi, D.; Keckhut, P.; Mandija, F.; Sarkissian, A.; Pietras, C.; Dupont, J.-C.; Farah, A.; Hauchecorne, A.; Porteneuve, J.
Published
by Atmosphere (Atmos) at 2025-03-20
Abstract
Citation
Full article (PDF)