



# High altitude attainment study progress (C7)

Masatomo Fujiwara (Hokkaido Univ., Japan) on behalf of Task Team Radiosondes, IPET-OSDE(\*)

(\*)IPET-OSDE: WMO CBS (Commission for Basic Systems) Inter-Programme Expert Team on Observing System Design and Evolution

## Task: Justification for high ascent attainment (for balloon soundings at GRUAN and other sites)

- Main Contact: TT Radiosondes, IPET-OSDE (since ICM-11)
- Milestone: Publication in the <u>peer reviewed literature</u> or a technical report
- Higher than 10 hPa level, 5 hPa level... (compared to 30 hPa)
- Criteria to include not only climate monitoring, but also: NWP impact; seasonal predictability; importance of monitoring LS winds; radiative transfer calculations; satellite validation; climatology, etc. [The "user needs"!]
- Notes:
  - Very important & very difficult task, as we have to provide the appropriate message to various different stakeholders
  - Your expert inputs (and strong support/encouragement) are essential to complete this task!
- Progress since ICM-13:
  - Started to draft a paper manuscript (contact MF if you would like to take a look)
  - Realized that we need at least one figure for each section Need your help!

### Contents of the manuscript

- 1. Introduction
- 2. Technical issues for balloon sounding
- Climate monitoring
- 4. Satellite validation
- 5. Radiative transfer calculations
- 6. Impacts on numerical weather forecast & Sub-seasonal to seasonal predictability
- 7. Summary and Conclusions

### 1. Introduction (... drafted)

- Role of balloon-borne radiosondes for upper air observations
- Height attainment requirements for . . .
  - GUAN (GCOS, 2002, 2010)
  - GBON (WMO, 2021)
  - GRUAN (GCOS, No. 112, 2007) [Table 1 (next slide) for the burst altitude statistics]
- "All the above requirements for height attainment for balloon-borne radiosonde soundings were provided without explicit scientific justification nor technical guidance." . . . as a justification of the paper manuscript



#### GRUAN Ascent Heights Jan 2018 to March 2020 [Need updates]

[Provided by Tony Reale]

|                                  | Launches            | 20 hPa (26km)                         | 10 hPa (31km)                       | 5hPa (36km)       |
|----------------------------------|---------------------|---------------------------------------|-------------------------------------|-------------------|
| Counts                           | 23102               | 14542 (63%)                           | 7565 (33%)                          | 420 (2%)          |
|                                  |                     |                                       |                                     |                   |
| All Polar (90-60)                | 7107                | 3681 (52%)                            | 1559 (22%)                          | 60 (1%)           |
| All Mid-Lat (60-30)              | 10961               | 6975 (64%)                            | 3769 (34%)                          | 294 (3%)          |
| All Tropic                       | 3332                | 2758 (82%)                            | 1460 (44%)                          | 66 (2%)           |
|                                  |                     |                                       |                                     |                   |
| Winter Polar                     | 1169                | 489 (42%)                             | 296 (25%)                           | 18 (2%)           |
| Winter Mid-Lat                   | 1968                | 1125 (57%)                            | 716 (36%)                           | 93 (5%)           |
|                                  |                     |                                       |                                     |                   |
| Summer Polar                     | 1337                | 757 (57%)                             | 126 (9%)                            | 2 (<1%)           |
| Summer Mid-Lat                   | 2262                | 1542 (68%)                            | 700 (31%)                           | 36 (2%)           |
|                                  |                     |                                       |                                     |                   |
| All NZ                           | 1680                | 1111 (66%)                            | 766 (46%)                           | 0                 |
| Summer NZ                        | 322                 | 303 (94%)                             | 222 (69%)                           | 0                 |
| Winter NZ                        | 327                 | 304 (92%)                             | 214 (65%)                           | 0                 |
| Summer Mid-Lat  All NZ Summer NZ | 2262<br>1680<br>322 | 1542 (68%)<br>1111 (66%)<br>303 (94%) | 700 (31%)<br>766 (46%)<br>222 (69%) | 36 (2%)<br>0<br>0 |

Winter: Oct 2018 to March 2019 Summer: April 2019 to Sept 2019

\*NZ: 10/1/2017 to 10/1/2018, 87% do not reach 20 hPa; *Invercargill 350g to 700g; Lauder 1500g* 

(Note: At Lauder, NZ, 1/4 of the launches are FPH that are valved to open at 15 hPa (28 km))

## 2. Technical issues for balloon soundings [and how to solve them] (... drafted)

- Balloon size versus burst altitude
  - limitation of rubber balloon technology (Why we cannot say we should aim at 1 hPa or 0.1 hPa?) (cf. Kinoshita et al., JTECH, 2022 (reaching 40 km by using 3000 g balloon for a 40 g radiosonde))
  - cost issue (by showing cost estimates???)
- Some important notes:
  - Early burst issues at nighttime tropical tropopause / in winter polar lower stratosphere (cf. the kerosene treatment / double balloon technique)
  - Issues in automatic radiosonde launchers?: Now they have capabilities for 800/1000 g balloons; but issues may arise when surface winds are too strong.
  - The biases in pressure-sensor measurements & the low biases of GNSS height measurements
  - We should make some practical suggestions on "how" to increase the average burst altitude (not only "why") perhaps also in the Conclusions section.
- Other important aspects?

### 3. Climate monitoring [at 30-5 hPa / 25-37 km]

• Good examples (studies) on this? <u>A good figure or two on this?</u> The followings are some examples (Please suggest me more!):

#### • Temperature:

- Homogenized satellite data products versus homogenized radiosonde data products (e.g., Maycock et al., 2018; Philipona et al., 2020); GNSS RO temperature versus radiosonde temperature (e.g., Steiner et al., 2020 (?))
- (See also SPARC Temperature activity: https://www.sparc-climate.org/activities/temperature-changes/)
- Winds in the stratosphere:
  - The QBO disruptions (2015/16 & 2019/20; e.g., Anstey et al., 2021) and the role of QBO in climate
  - (Issues in extratropical stratospheric winds?)
  - Satellite instrument Aeolus (August 2018) observes global wind profiles to 30 km (https://earth.esa.int/eogateway/missions/aeolus)
- Water vapor and ozone in the stratosphere:
  - Aura MLS (v4 to v5) versus FPH/CFH (Hurst et al., 2022)
  - O3S-DQA (ozonesonde data homogenization) & SPARC LOTUS (https://www.sparc-climate.org/activities/ozone-trends/)

## 4. Satellite validation (. . . inputs needed!)

- GSICS (Global Space-based Inter-Calibration System, https://gsics.wmo.int/)
  - higher ascent radiosondes are collocated with satellite (hyperspectral IR, etc. (GNSS RO when available))
  - Key references:
- NPROVS (STAR / SMCD / OPDB NOAA Products Validation System, https://www.star.nesdis.noaa.gov/smcd/opdb/nprovs/)
- GNSS RO validation: "Depending on the accuracy of the sonde measurements at these heights (30-5 hPa / 25-37 km), there will be great benefits in cross-validation with GNSS-RO temperature retrievals (e.g., evaluating the effect of ionospheric residual error). It's always hard to find stratospheric data good enough for that." (Comments by Chi O. Ao @NASA/JPL)
- The GNSS RO temperature issues presented at ICM-13 . . . Different retrieval products show differences (By Noersomadi at BRIN/LAPAN)
- Aura MLS water vapor (v4 to v5) vs. FPH/CFH (Hurst et al., 2022)
- How about ozone? (e.g., the use of ozonesonde data to homogenize satellite ozone data sets by Davis et al., 2016)
- Aeolus validation status?
- A good figure or two on this?

## 5. Radiative transfer calculations [including GSICS need] (... inputs needed!)

- Context:
  - Validation of climate models and weather forecast models
  - Validation of satellite data processing / satellite sensor monitoring [GSICS]
  - Validation of ground-based remote sensing data processing
  - Others?
- Show some examples . . .
  - Impact on line-by-line radiative transfer calculations [Lori A. Borg / Nico Cimini]
- A good figure or two on this?

## 6. Impacts on numerical weather forecast & Sub-seasonal to seasonal predictability

- There were substantial inputs and discussions on this aspect (from Met Office and JMA colleagues; also some info from NCEP colleagues).
- There was a comment that we GRUAN should focus primarily on climate; but, WG asked us to include the NWP aspect as well. – Perhaps, we will try to make this section short and concise?
- (Ask for inputs also from SPARC researchers on the role of stratosphere on predictability?)
- Here, only the key points are summarized:
  - WMO Impact Studies Workshops have always been concerning this. The latest question is: "What is the changing impact of radiosonde data in the presence of changes in satellite data?"
  - There are tools: e.g., FSOI (Forecast Sensitivity of Observations Impact) at Met Office. (But, many said that it is not easy to show the impacts in a clear way due to the S/N issue.)
  - Radiosonde data are also useful to assess NWP/forecast models in radiance/TB space (not only as anchor observations to keep an NWP system (and its bias correction) healthy). (In competition with GNSS RO?)
  - Recent works found that the stratosphere is crucial in initialisation and in the skill from the seasonal forecast [through the North Atlantic Oscillation or Arctic Oscillation].
  - Regarding the forecast skill, high ascents in winter is much more important as stratosphere-troposphere dynamical coupling operates in winter. [By Bruce Ingleby]

### 7. Summary and Conclusions

- Introduction
- 2. Technical issues for balloon sounding
- 3. Climate monitoring
- 4. Satellite validation
- 5. Radiative transfer calculations

Need your help! (figs. & text)

- 6. Impacts on numerical weather forecast & Sub-seasonal to seasonal predictability
- 7. Summary and Conclusions

- GNSS RO temperature retrievals are often considered as "bias free" in the UTLS
- However, there are differences in the data products above ~25 km due to the differences in the processing algorithms, e.g., treatments of the ionospheric effects, of the lower tropospheric humidity, etc.
- There are several processing centers, e.g., CDAAC, DMI, WEGC, GFZ
- (Note that reanalyses assimilate GNSS RO data as bending angle or refractive index, not temperature retrievals)
- Below are examples of comparisons among different COSMIC-2 data products from CDAAC



(Courtesy of Dr. Noersomadi at LAPAN, Indonesia)

Slide presented at ICM-13

#### In ICM-14 . . . Talks with some relevance

## Session 6 - Science and Innovation-1 (09:00-10:45 RET – 05:00-06:45 UTC) (Presentations 15min+5min)

| 6-2 | 09:20-09:40 | The impact analysis of NWS migration to Vaisala RS41                                                                                                                                    | Tony Reale      |
|-----|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 6-3 | 09:40-10:00 | Sequential radiosonde launches and their use in satellite data calibration/validation                                                                                                   | Bomin Sun       |
| 6-4 | 10:00-10:20 | Options for radiosonde launches with EUMETSAT Metop and Metop-SG overpasses                                                                                                             | Axel Von Engeln |
| 6-5 | 10:20-10:40 | Fine detailed fitting of observed IASI radiances to calculated ones using GRUAN sondes and radiative transfer modelling water vapor inhomogeneities within the satellite field of view. | Xavier Calbet   |

| 8-2 | 13:50-14:10 | Direct validation of radiosonde data against | Axel Von Engeln |
|-----|-------------|----------------------------------------------|-----------------|
|     |             | radio occultation bending angles             |                 |